

TECHNICAL REPORT

AMENDED STORMWATER MANAGEMENT REPORT

HOLTEC OFFICE BUILDING BLOCK 514, LOT 3.01 CITY OF CAMDEN CAMDEN COUNTY, NEW JERSEY

Prepared For:

USA Architects 20 North Doughty Avenue Somerville, New Jersey 08876

Prepared By:

Pennoni 2 Aquarium Drive, Ste 320 Camden, New Jersey 08103 T:856-668-8600 www.pennoni.com

Joseph Raday, PE New Jersey License No. 24GE043768

October 12, 2023 December 28, 2023 August 23, 2024

Proj. No. USATX22001

TABLE OF CONTENTS

1
1
7
7
7
10
10
10
11

EXHIBITS

- FIGURE 1 LOCATION MAP
- FIGURE 2 TAX MAP
- FIGURE 3 SOILS MAP
- FIGURE 4 FLOOD INSURANCE RATE MAP

APPENDICIES

- **APPENDIX A WATER QUALITY STORM HYDROGRAPHS**
- APPENDIX B STORM SEWER CALCULATIONS AND 25-YEAR STORM CALCULATIONS
- **APPENDIX C REFERENCE DATA**
- **APPENDIX D DRAINAGE AREA PLANS**

1.0 INTRODUCTION

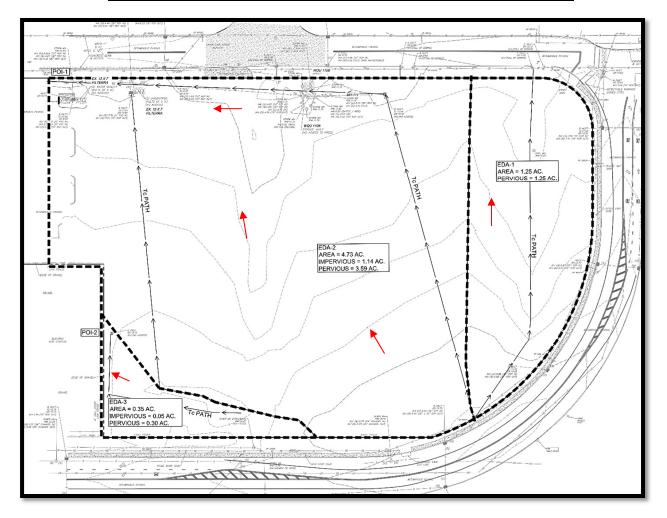
Pennoni Associates, Inc., has been retained by USA Architects to provide preliminary/final design for a proposed two-story office building, parking area expansion at the Main Office building, stormwater conveyance facilities, landscaping and lighting in the City of Camden, Camden County, New Jersey.

2.0 PROJECT DESCRIPTION

The proposed two-story office building project is bounded by Broadway to the south and west and Holtec Boulevard to the north, and the proposed parking expansion is bounded by the Main Office building to the southwest and the Delaware River to the north in Camden, New Jersey. The property can be found on the United States Geological Survey (USGS) 7.5- minute topographic quadrangle for Camden, New Jersey. A copy of the USGS map is provided as Figure 1. The property consists of Blocks 511, 512, 514 and 515 (Figure 2). The "site" is defined as the tax map property boundaries. The site is the location of a vacant lots and right of way areas that have been abandoned.

PRE-DEVELOPED CONDITIONS (PROPOSED OFFICE BUILDING)

The site is part of the Holtec Technology Center (HTC) project located along Broadway and Holtec Boulevard. The water quality structures and downstream stormwater conveyance piping to the Delaware River was constructed in 2016. The piping is sized for build out of the project site. The existing water quality structures are designed to treat 4.32 acres of regulated impervious surface from the project site (reference Appendix C, Stormwater Management Report, Holtec Technology Center, prepared by T&M Associates, last revised May 1, 2015). Two of the three existing MTD's are classified as green-infrastructure BMP's. The project site discharges to a tidal flood hazard area along the Delaware River.

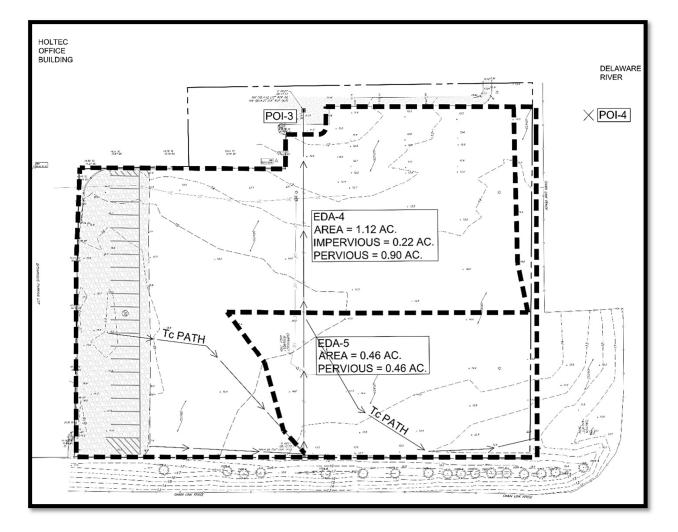

For existing condition runoff calculations, the site is analyzed as three (3) drainage sub-areas Existing Drainage Area 1 (EDA-1) thru Existing Drainage Area 3 (EDA-3), which drain to two (2) "points of interest" (POI) POI-1 and POI-2 (See Dwg. CS-9001, Appendix D).

Existing drainage area 1 (EDA-1) and existing drainage area 2 (EDA-2) consists of the existing dirt storage/parking area, paved parking area and grassed open space area. The stormwater runoff drains in a westerly direction to existing onsite stormwater conveyance system and to an existing stormwater conveyance system located within Broadway (POI-1). The existing stormwater system extends through the Holtec site and discharges directly to the Delaware River.

Existing drainage area 3 (EDA-2) consists of existing dirt and grass storage area along the southeasterly corner of the site. The stormwater runoff drains offsite in a southerly direction towards an inlet located onsite (POI-2

A schematic diagram indicating the flow patterns is provided below. The Pre-Developed Drainage Area Plan (CS9001) can be found in Appendix D.

PRE-DEVELOPED DRAINAGE AREA MAP (PROPOSED OFFICE BUILDING)



PRE-DEVELOPED CONDITIONS (PARKING EXPANSION)

Existing drainage area 4 (EDA-4) consists of existing grass area located in a northeasterly direction from Holtec's main office building. The stormwater runoff drains in a westerly direction towards an existing water quality inlet located onsite (POI-3). The existing stormwater system extends through Holtec's site and discharges directly to the Delaware River.

Existing drainage area 5 (EDA-5) consists of existing dirt and grass areas along the northeasterly corner of the main office building site. The stormwater runoff drains in a northwesterly direction to the Delaware River POI-4).

A schematic diagram indicating the flow patterns is provided below. The Pre-Developed Drainage Area Plan (CS9001A) can be found in Appendix D.

PRE-DEVELOPED DRAINAGE AREA MAP (PARKING EXPANSION)

POST DEVELOPED CONDITIONS (PROPOSED OFFICE BUILDING)

The project construction consists of a proposed office building, paved parking areas, stormwater collection, stormwater management, landscaping and lighting. The project is proposing 4.34 acres +/- (total) of impervious surface. Regulated impervious surface requiring TSS removal is approximately 3.36 acres.

The proposed watershed areas for the Office Building analysis are divided into seven (7) sub areas, proposed drainage area 1 thru proposed drainage area 7 (PDA-1 thru PDA-7) and offsite 5 impervious and pervious areas (Offsite 5) (See Dwg. CS9002). For this report the post-developed calculations were analyzed to two (2) "points of interest" (POI) POI-1 and POI-2 (Appendix A).

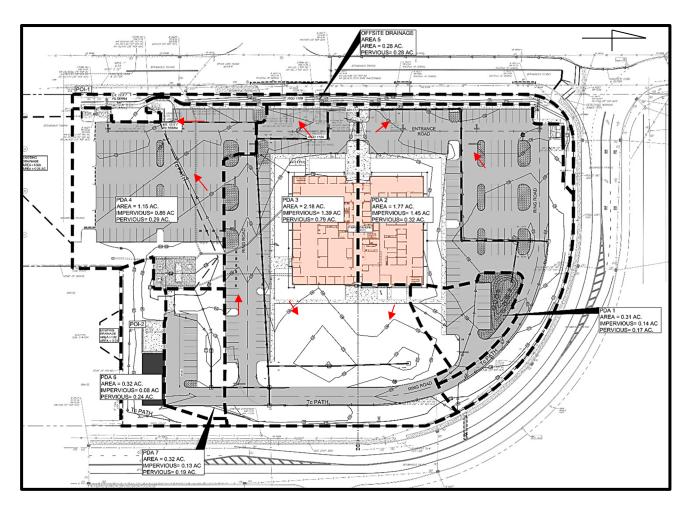
Proposed drainage area 1 (PDA-1) consists of runoff from the easterly parking area and open space area. The runoff flows to a proposed bioretention basin #1. The basin discharges to stormwater collection system within the site to the existing green-infrastructure (GI) MTD. The existing GI MTD discharges to an existing stormwater conveyance system which extends along the westerly side of the site (POI-1) and discharges to the Delaware River.

Proposed drainage area 2 (PDA-2) consists of proposed building and parking areas located on the southernly and westerly sides of the site. The stormwater runoff is collected by a proposed stormwater system within the site to the existing green-infrastructure (GI) MTD. The existing GI MTD discharges to an existing stormwater conveyance system which extends along the westerly side of the site (POI-1) and discharges to the Delaware River.

Proposed drainage area 3 (PDA-3) consists of proposed building and parking areas located on the northernly and westerly sides of the site. The stormwater runoff is collected by a proposed stormwater system within the site to the existing green-infrastructure (GI) MTD. The existing GI MTD discharges to an existing stormwater conveyance system which extends along the westerly side of the site and discharges to the Delaware River.

Proposed drainage area 4 (PDA-4) consists of existing dirt parking/storage area located on the southernly side of the site. A parking area is proposed, and the stormwater runoff drains in a westerly direction and is collected by an existing green-infrastructure (GI) MTD. The existing GI MTD discharges to an existing stormwater conveyance system which extends along the westerly side of the site and discharges to the Delaware River.

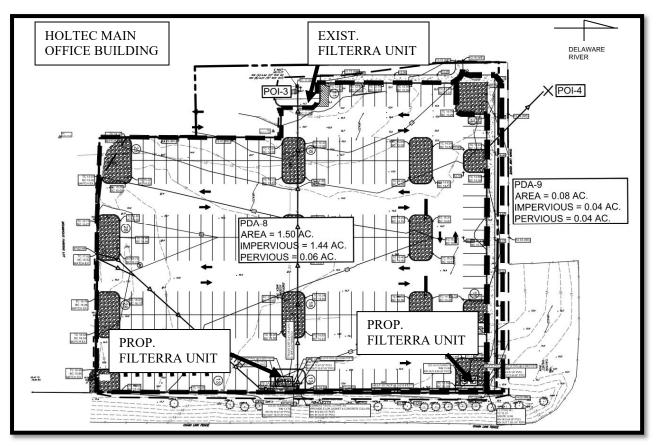
Proposed drainage area 5 (PDA-5) consists of grass area located on the westerly side of the site. The stormwater runoff drains in a westerly direction and is collected by an existing stormwater conveyance system, which extends to Holtec Boulevard and discharges to the Delaware River.


Proposed drainage area 6 (PDA-6) consists of a proposed pole barn located on the southernly side of the site. The stormwater runoff drains in a southernly direction and is collected by an existing stormwater conveyance system, which extends to Holtec Boulevard and discharges to the Delaware River.

Proposed drainage area 7 (PDA-7) consists of a proposed parking area for the pole barn and is located on the southernly side of the site. The stormwater runoff drains in a northernly direction and is collected by the proposed stormwater conveyance system, which extends through the site to Holtec Boulevard and discharges to the Delaware River.

A schematic diagram indicating the flow patterns is provided below. The Post-Developed Drainage Area Plan (CS9002) can be found in Appendix D.

POST-DEVELOPED DRAINAGE AREA MAP (PROPOSED OFFICE BUILDING)



POST-DEVELOPED CONDITIONS (PARKING EXPANSION)

Proposed drainage area 8 (PDA-8) consists of a proposed parking area located in a northeasterly direction from Holtec's main office building. The stormwater runoff drains in a northeasterly direction towards two (2) proposed Filterra water quality inlets and in a westerly direction towards two (2) existing Filterra water quality inlets located onsite (POI-3). The proposed stormwater collection system will connect into the existing stormwater system constructed under the previous HTC project that extends through Holtec's site and discharges directly to the Delaware River.

Proposed drainage area 9 (PDA-9) consists of proposed sidewalk and grass area along the northeasterly corner of the main office building site. The stormwater runoff drains in a northwesterly direction to the Delaware River (POI-4).

A schematic diagram indicating the flow patterns is provided below. The Post-Developed Drainage Area Plan (CS9002A) can be found in Appendix D.

POST-DEVELOPED DRAINAGE AREA MAP (PARKING EXPANSION)

3.0 SOIL DATA

The site soils consist of Urban land (Ur), 0 to 5 percent slopes as depicted on the United States Department of Agriculture, (USDA) Web Soil Survey of Camden County, New Jersey (Figure 3). Urban land has not been assigned a hydrologic soil group; therefore Type "D" soils have been utilized.

4.0 WATERSHED DATA

Based on a review of FEMA Flood Insurance Rate Maps, and NJ GeoWeb, we have made the following determinations near the project limits:

According to the National Flood Insurance Program's Effective Flood Insurance Rate Map FEMA Panel #34007C0036F, revised 8/17/2016, the proposed site is located within the FEMA flood hazard area X (Figure 4).

5.0 DESIGN CRITERIA

In accordance with the New Jersey Department of Environmental Protection (NJDEP) Stormwater Management Rules at N.J.A.C. 7:8, a Major Development is defined as a development which disturbs one or more acres of land and/or increases impervious coverage by one-quarter of an acre or more.

GREEN INFRASTRUCTURE:

To satisfy the groundwater recharge, runoff quality and runoff quantity the project design must utilize green infrastructure BMP's (GI BMP) as identified in Table 5-1 at N.J.A.C. 7:8-5.2 (f) or an alternative stormwater management measure approved in accordance with N.J.A.C. 7:8-5.2(g). The following green infrastructure BMP's from Table 5-1 at N.J.A.C. 7:8-5.2 (b) have been incorporated into the project design:

 Green Infrastructure Stormwater MTD's – Two (2) green infrastructure BMP's in the form of Filterra bioretention systems are provided as part of the project design. As required by N.J.A.C. 7:8-5.3 (b), the small-scale green infrastructure BMP is subject to a maximum contributory drainage area of 2.5 acres.

Office Building -

The existing green infrastructure MTD's (3 - Filterra units) will have contributory drainage areas of 0.75 acres and 0.37 acres. The existing GI MTD's were designed for a maximum contributory drainage area of 1.0 acre and 0.50 acres, respectively.

Parking Expansion -

The impervious area is treated by two (2) existing green infrastructure MTD's (Filterra Units) is 0.75 acres (0.65 acres proposed + 0.10 acres existing). Two (2) proposed GI MTD's (Filterra Units) will treat 0.30 acres and 0.47 acres of impervious area (reference Appendix C). The proposed green infrastructure BMP complies with N.J.A.C. 7:8-5.3 (b).

GROUNDWATER RECHARGE:

Pursuant to the N.J.A.C. 7:8-5.4 (b) groundwater recharge requirements apply if there is either a 0.25 acre increase in impervious area or one acre of disturbance. The project disturbs more than one acre and increases motor vehicle surfaces by more than 0.25 acres. Therefore, one of the following requirements shall be met to satisfy the standards for groundwater recharge: (1) 100 percent of the site's average annual pre-developed groundwater recharge volume shall be maintained after development; (2) 100 percent of the difference between the site's pre- and post-developed 2-year runoff volumes shall be infiltrated.

According to the New Jersey State Development and Redevelopment Plan, the site is within a designated Urban Center. Groundwater recharge is not required within an "Urban Redevelopment Area" pursuant to N.J.A.C. 7:8-5.4(b)2 (Appendix C, Reference Data). Therefore, groundwater recharge was not evaluated for this project.

RUNOFF QUANTITY:

Post-construction runoff hydrographs for the 2, 10 and 100-year has not been analyzed as part of the stormwater management design. Pursuant to N.J.A.C. 7:8-5.6(b) 4. In tidal flood hazard areas, stormwater runoff quantity analysis, in accordance with (b)1, 2, and 3 above, is required unless the design engineer demonstrates through hydrologic and hydraulic analysis that the increased volume, change in timing, or increased rate of the stormwater runoff, or any combination of the three will not result in additional flood damage below the point of discharge of the major development. No analysis is required if the stormwater is discharged directly into any ocean, bay, inlet, or the reach of any watercourse between its confluence with an ocean, bay, or inlet and downstream of the first water control structure.

In accordance with N.J.A.C. 7:8-5.6(b)4, no analysis is required if the stormwater is discharged directly into any ocean, bay, inlet, or the reach of any watercourse between its confluence with an ocean, bay, or inlet and downstream of the first water control structure. The project site discharges directly to the tidal flood hazard area of the Delaware River. Therefore, any runoff from the site will not increase flood damages downstream. The site is part of the Holtec Technology Center project. The water quality structures and downstream stormwater conveyance systems to the Delaware River were constructed in 2016 and were sized for build out of the project site. The proposed office building site increases grass areas thereby reducing runoff from 25-year storm event (reference Appendix B).

RUNOFF QUALITY:

Pursuant to N.J.A.C. 7:8-5.2 (f), the green infrastructure BMP's can be utilized to satisfy the requirements of N.J.A.C. 7:8-5.5 for stormwater runoff quality. Stormwater Management measures shall be designed to reduce the post-construction load of total suspended solids (TSS) in stormwater runoff generated from the water quality design storm by 80 percent of the anticipated load from the developed site. The increase in motor vehicle surface, must be treated for 80% TSS reductions.

The water quality standards will apply as the net increase of motor vehicle surface is 3.36 acres which exceeds the maximum net increase of 0.25 acres.

The site currently contains both green infrastructure MTD's and non-green infrastructure MTD's.

Office Building-

The existing green infrastructure MTD's (2 - Filterra units) provide 80% TSS removal for proposed impervious area of 0.87 acres. The units were designed to treat 1.5 acres of impervious area.

Existing non-green infrastructure MTD's (2 - Vortechs units) provide 50% TSS removal for proposed impervious area of 3.19 acres. The units were designed to treat 3.64 acres of impervious.

The non-green manufactured treatment devices installed in 2016 provide 50% TSS removal for redeveloped sites. The site has been redeveloped and previously contained multi-family homes, paved roadways and buildings. The proposed site will utilize the existing green and non-green MTD's. Maintenance to the existing MTD's will be included as part of the proposed development.

Parking Expansion-

Under the HTC design, the existing green infrastructure MTD (2 - Filterra unit) provides 80% TSS removal for of 0.85 acres of impervious area. Under proposed conditions, the existing GI MTD will treat 0.65 acres of impervious area.

The proposed green infrastructure MTD's (2 - Filterra units) provide 80% TSS removal for proposed impervious areas of 0.28 acres and 0.45 acres. The units were originally designed to treat 0.43 acres and 0.45 acres, respectively of impervious area.

6.0 TECHNIQUES OF ANALYSIS

The water quality (WQ) design storm is 1.25 inches of rainfall in 2-hours. In accordance with N.J.A.C. 7:8-5.5, Table 5-4, a one-minute water quality design storm rainfall distribution was utilized for the calculations. Bentley's Pondpack Connect Edition was used to perform the calculations.

The developed area is made up of Urban Land, Type D soils. Therefore, CNs of 80 for lawn in good condition, 84 for lawn/landscaped areas in fair condition, 98 for impervious areas have been utilized in the calculations. The impervious areas were calculated as separate subareas to generate hydrographs without weighted CNs as outlined in the BMP manual chapter 5.

Pre- and post-developed times of concentration (TC) are determined using the hydraulically longest flow path. Curve numbers (CN) for the drainage areas for the pre- and post-developed condition are based on the hydrologic soil group and land use.

Using the drainage areas, the TCs and CNs as input data, *Pond Pack Connect Edition*, a hydrologic/hydraulic software program by Bentley, was utilized to generate the runoff volume and rate.

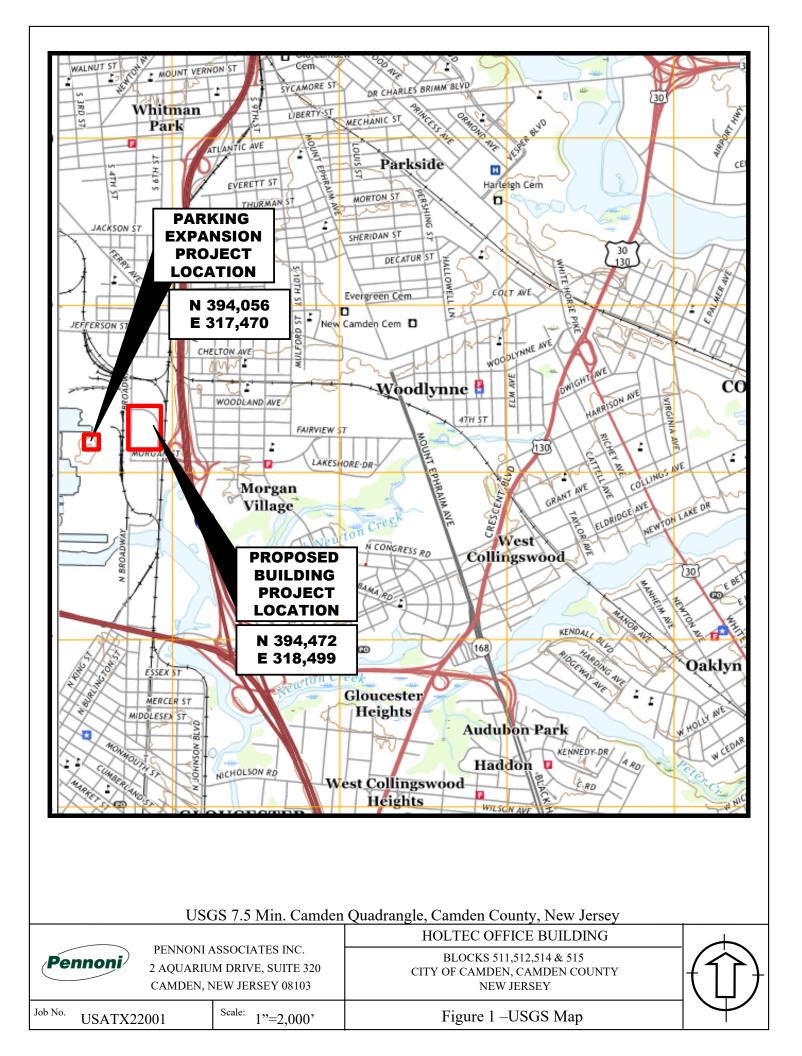
7.0 STORM SEWER DESIGN

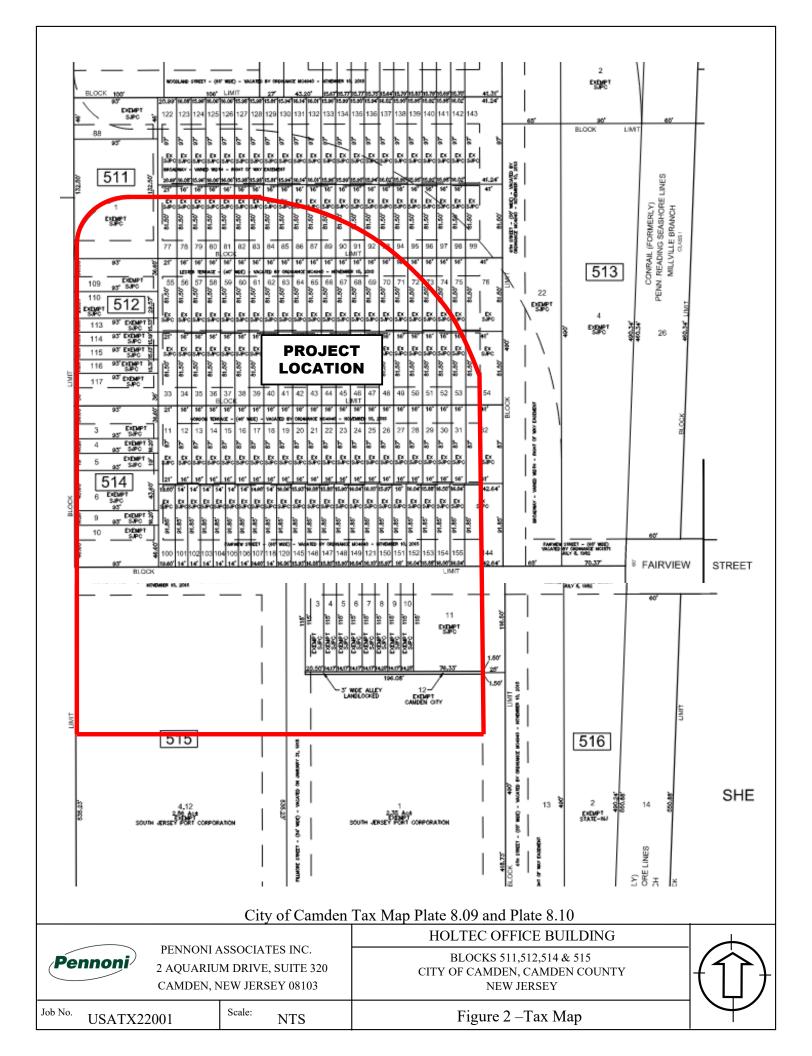
Storm sewer design consists of Type "B" inlets, manholes, and RCP and HDPE storm pipes. All proposed conveyance systems have been sized to accommodate the 25-year storm event (Appendix B). Rainfall intensities are based on NOAA data for City of Camden, NJ (Appendix C). The infrastructure is depicted on sheet CS9003, Inlet Drainage Area Plan (Appendix D).

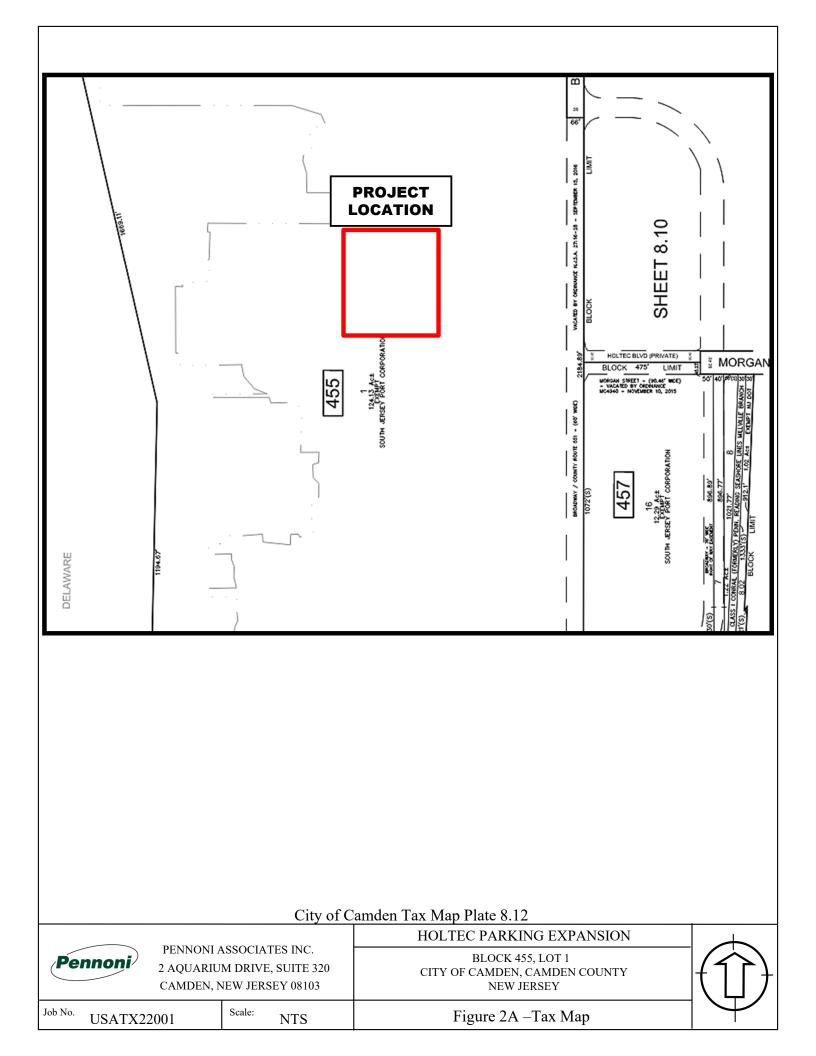
8.0 SOIL EROSION AND SEDIMENT CONTROL

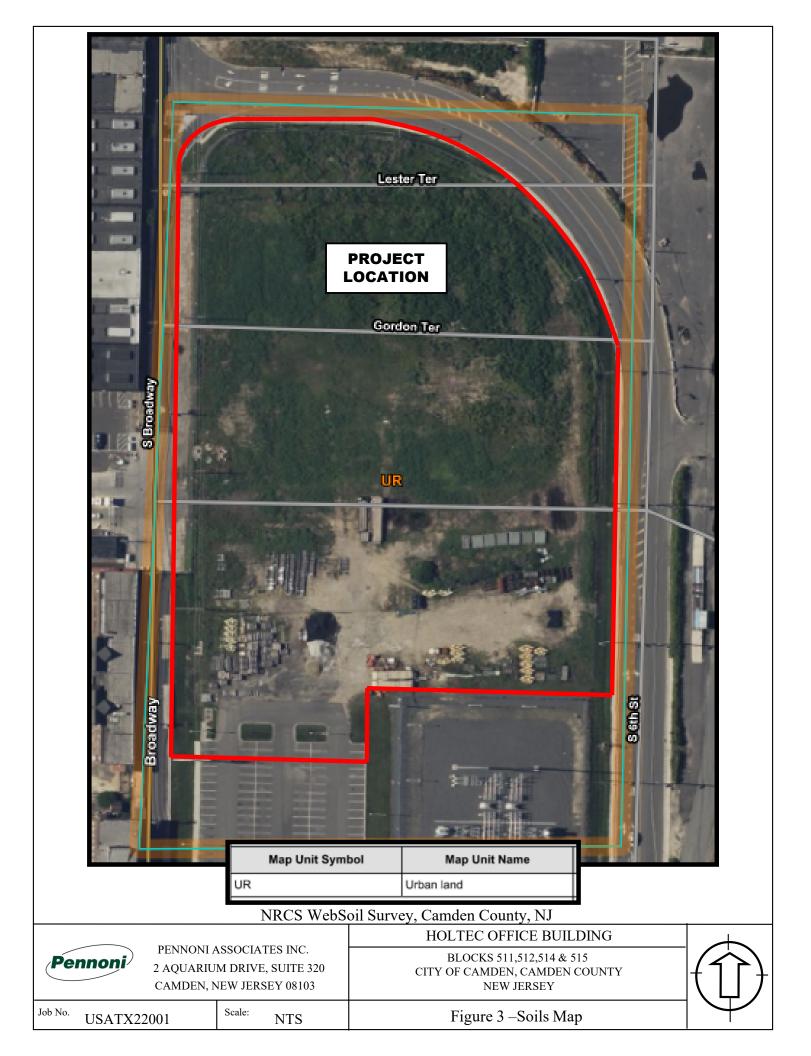
The project will comply with the minimum design and performance standards for erosion control established under the Soil Erosion and Sediment Control Act, N.J.S.A. 4:24-39 et seq. and implementing rules. Anticipated BMP's to be included in the Soil Erosion and Sediment Control Plan will include, structural and non-structural soil erosion BMP's to be implemented during construction, including: minimizing the area of disturbance, placement of silt fencing around the limit of disturbance, temporary soil stockpiles surrounded with silt fencing, temporary vegetative cover standards, inlet filter covers over all existing stormwater inlets, and an anti-tracking stabilized construction District for certification of a Soil Erosion and Sediment Control District for control Plan prior to commencement of construction.

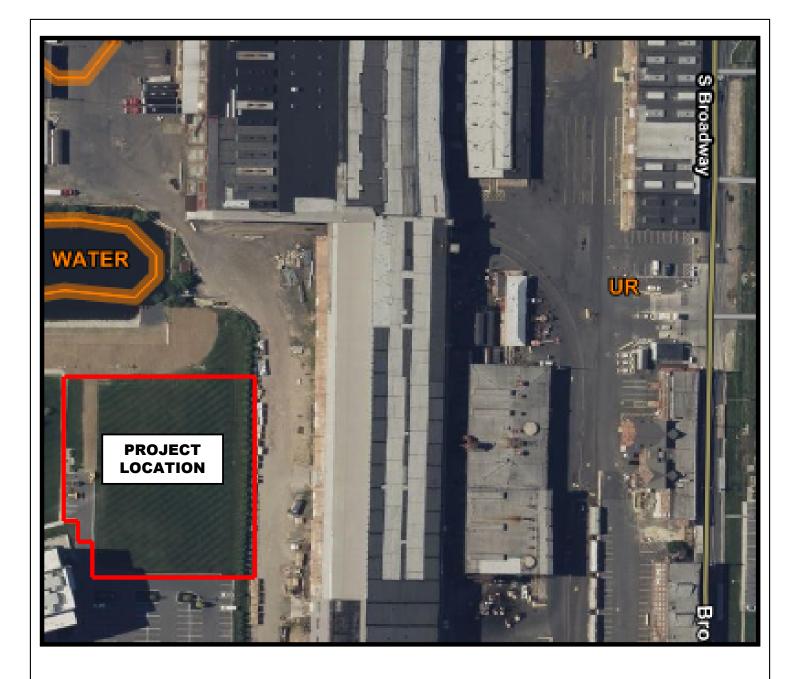
9.0 CONCLUSION




The site is part of the overall Holtec Technology Center site located along Broadway and Holtec Boulevard. The proposed stormwater conveyance system connects to an existing stormwater system located within Broadway. The existing stormwater system discharges directly to the Delaware River. A summary of the stormwater management design is as follows:

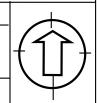

- N.J.A.C. 7:8-5.6(b)4, no analysis is required if the stormwater is discharged directly into any ocean, bay, inlet, or the reach of any watercourse between its confluence with an ocean, bay, or inlet and downstream of the first water control structure. The project site discharges directly to the tidal flood hazard area of the Delaware River. Therefore, any runoff from the site will not increase flood damages downstream.
- The project is located within an Urban Redevelopment Area, and therefore, pursuant to N.J.A.C. 7:8-5.4(b)2 the groundwater recharge requirement does not apply.
- The required TSS removal rate under the 2015 site plan approval was 50%. The existing nongreen MTD's were designed to provide 50% TSS removal and have sufficient capacity to treat the proposed project. The green infrastructure MTD's were designed to provide 80% TSS removal and have sufficient capacity to treat the proposed project.

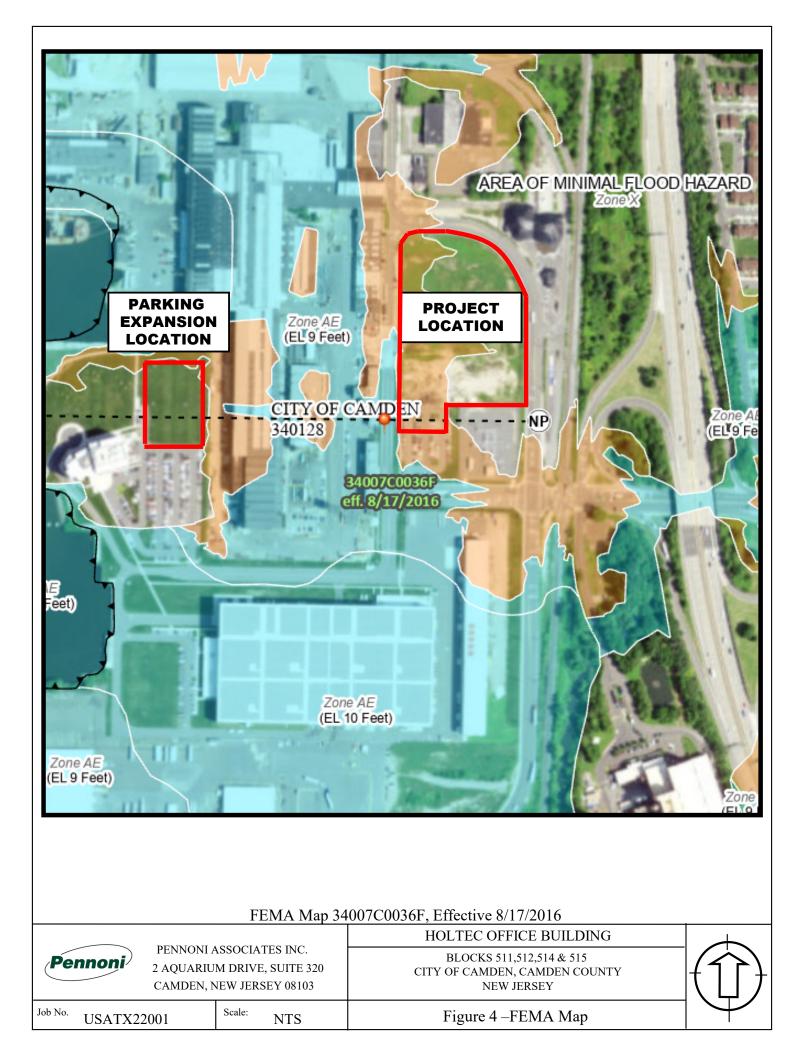



Exhibits

Map Unit Symbol	Map Unit Name	
UR	Urban land	

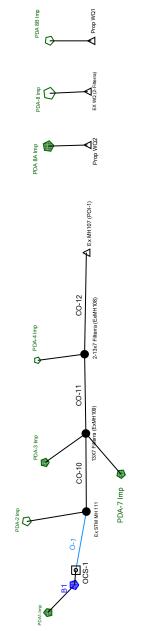
NRCS WebSoil Survey, Camden County, NJ HOLTEC PARKING EXPANSION


Pennoni	


Job No.

	PENNONI A	SSOCIA	TES INC.
nnoni	2 AQUARIU CAMDEN, N		·
USATX22	2001	Scale:	NTS

BLOCK 455, LOT 1 CITY OF CAMDEN, CAMDEN COUNTY NEW JERSEY


Figure 3A – Soils Map

Appendix A

Scenario: base

PROPOSED OFFICE BUILDING

CE BUILDING

2024-07-31 WQ.ppc 8/21/2024

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 1 of 1

Table of Contents

	Master Network Summary	1
PDA 8A Imp		
	Time of Concentration Calculations, 1 years (base)	2
PDA 8B Imp		
	Time of Concentration Calculations, 1 years (base)	4
PDA1-Imp		
	Time of Concentration Calculations, 1 years (base)	6
PDA-2 Imp		
	Time of Concentration Calculations, 1 years (base)	8
PDA-3 Imp		
	Time of Concentration Calculations, 1 years (base)	10
PDA-4 Imp		
	Time of Concentration Calculations, 1 years (base)	13
PDA-7 Imp		
	Time of Concentration Calculations, 1 years (base)	15
PDA-8 Imp		
	Time of Concentration Calculations, 1 years (base)	18
PDA 8A Imp		
	Unit Hydrograph Summary, 1 years (base)	20
PDA 8B Imp		
	Unit Hydrograph Summary, 1 years (base)	22
PDA1-Imp		
	Unit Hydrograph Summary, 1 years (base)	24
PDA-2 Imp		
	Unit Hydrograph Summary, 1 years (base)	26
PDA-3 Imp		
	Unit Hydrograph Summary, 1 years (base)	28
PDA-4 Imp		
	Unit Hydrograph Summary, 1 years (base)	30
PDA-7 Imp		
	Unit Hydrograph Summary, 1 years (base)	32
PDA-8 Imp		
	Unit Hydrograph Summary, 1 years (base)	34

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (hours)	Peak Flow (ft ³ /s)
PDA 8A Imp	base	1	1,766.00	1.100	1.20
PDA 8B Imp	base	1	1,014.00	1.100	0.69
PDA-2 Imp	base	1	5,446.00	1.100	3.23
PDA-3 Imp	base	1	5,222.00	1.100	3.54
PDA-4 Imp	base	1	3,231.00	1.100	2.19
PDA-7 Imp	base	1	488.00	1.100	0.33
PDA-8 Imp	base	1	2,630.00	1.100	1.78
PDA1-Imp	base	1	526.00	1.100	0.36

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (hours)	Peak Flow (ft ³ /s)
13X7 Filterra (ExMH109)	base	1	11,682.00	1.100	7.43
2-13x7 Filterra (ExMH108)	base	1	14,913.00	1.100	9.62
EX WQ (2-Filterra)	base	1	2,630.00	1.100	1.78
Ex MH107 (POI-1)	base	1	14,913.00	1.100	9.62
Ex STM MH 111	base	1	5,972.00	1.100	3.56
Prop WQ1	base	1	1,014.00	1.100	0.69
Prop WQ2	base	1	1,766.00	1.100	1.20

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ft³)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ft ³)
B1 (IN)	base	1	526.00	1.100	0.36	(N/A)	(N/A)
B1 (OUT)	base	1	526.00	1.100	0.34	8.71	6.00

Subsection: Time of Concentration Calculations Label: PDA 8A Imp Scenario: base

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	1
Hydraulic Length	100.00 ft
Manning's n	0.011
Slope	0.019 ft/ft
2 Year 24 Hour Depth	3.40 in
Average Velocity	1.39 ft/s
Segment Time of Concentration	0.020 hours
Segment #2: TR-55 Shallow Co	oncentrated Flow
Hydraulic Length	129.00 ft
Is Paved?	True
Slope	0.010 ft/ft
Average Velocity	2.03 ft/s
Segment Time of Concentration	0.018 hours
	····
Time of Concentration (Compos	ite)
Time of Concentration (Composite)	0.083 hours

Subsection: Time of Concentration Calculations Label: PDA 8A Imp Scenario: base

==== SCS Channel Flow

R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =

Unpaved surface: V = $16.1345 * (Sf^{**}0.5)$

Paved Surface: V = 20.3282 * (Sf**0.5)

Where:

(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

2024-07-31 WQ.ppc 8/21/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 3 of 35

Subsection: Time of Concentration Calculations Label: PDA 8B Imp Scenario: base

Time of Concentration Results

Segment #1: TR-55 Sheet Flow				
Hydraulic Length	100.00 ft			
Manning's n	0.011			
Slope	0.020 ft/ft			
2 Year 24 Hour Depth	3.40 in			
Average Velocity	1.42 ft/s			
Segment Time of Concentration	0.020 hours			
Segment #2: TR-55 Shallow Concentrated Flow				
Hydraulic Length	92.00 ft			
Is Paved?	True			
Slope	0.013 ft/ft			
Average Velocity	2.32 ft/s			
Segment Time of Concentration	0.011 hours			
	· · · ·			
Time of Concentration (Compos	ite)			
Time of Concentration (Composite)	0.083 hours			

Subsection: Time of Concentration Calculations Label: PDA 8B Imp Scenario: base

==== SCS Channel Flow

R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =

Unpaved surface: V = $16.1345 * (Sf^{**}0.5)$

Paved Surface: V = 20.3282 * (Sf**0.5)

Where:

(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

2024-07-31 WQ.ppc 8/21/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 5 of 35

Subsection: Time of Concentration Calculations Label: PDA1-Imp Scenario: base

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	
Hydraulic Length	100.00 ft
Manning's n	0.011
Slope	0.015 ft/ft
2 Year 24 Hour Depth	3.40 in
Average Velocity	1.26 ft/s
Segment Time of Concentration	0.022 hours
Segment #2: TR-55 Shallow Con	centrated Flow
Hydraulic Length	65.00 ft
Is Paved?	True
Slope	0.016 ft/ft
Average Velocity	2.57 ft/s
Segment Time of Concentration	0.007 hours
Time of Concentration (Composite	e)
Time of Concentration (Composite)	0.083 hours

Subsection: Time of Concentration Calculations Label: PDA1-Imp Scenario: base

==== SCS Channel Flow

Tc =

R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =

Unpaved surface: V = 16.1345 * (Sf**0.5)

Paved Surface: V = 20.3282 * (Sf**0.5)

Where:

(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

2024-07-31 WQ.ppc 8/21/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 7 of 35

Subsection: Time of Concentration Calculations Label: PDA-2 Imp Scenario: base

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	
Hydraulic Length	36.00 ft
Manning's n	0.150
Slope	0.036 ft/ft
2 Year 24 Hour Depth	3.40 in
Average Velocity	0.18 ft/s
Segment Time of	0.055 hours
Concentration	0.055 110015
Segment #2: TR-55 Shallow Cond	centrated Flow
Hydraulic Length	237.00 ft
Is Paved?	True
Slope	0.014 ft/ft
Average Velocity	2.41 ft/s
Segment Time of	0.027 hours
Concentration	
Segment #3: TR-55 Channel Flow	V
Flow Area	1.8 ft ²
Hydraulic Length	411.00 ft
Manning's n	0.015
Slope	0.005 ft/ft
Wetted Perimeter	4.70 ft
Average Velocity	3.70 ft/s
Segment Time of	0.031 hours
Concentration	0.001 10015
Time of Concentration (Composite)
Time of Concentration (Composite)	0.113 hours

Subsection: Time of Concentration Calculations Label: PDA-2 Imp Scenario: base

==== SCS Channel Flow

Tc =

R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =

Unpaved surface: V = 16.1345 * (Sf**0.5)

Paved Surface: V = 20.3282 * (Sf**0.5)

Where:

(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Sheet Flow

Tc =	(0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4))
Where:	Tc= Time of concentration, hours
	n= Manning's n
	Lf= Flow length, feet
	P= 2yr, 24hr Rain depth, inches
	Sf= Slope, %

2024-07-31 WQ.ppc 8/21/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 9 of 35

Subsection: Time of Concentration Calculations Label: PDA-3 Imp Scenario: base

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	
Hydraulic Length	100.00 ft
Manning's n	0.011
Slope	0.008 ft/ft
2 Year 24 Hour Depth	3.40 in
Average Velocity	0.96 ft/s
Segment Time of	0.029 hours
Concentration	
Segment #2: TR-55 Shallow Conce	ntrated Flow
Hydraulic Length	119.00 ft
Is Paved?	True
Slope	0.008 ft/ft
Average Velocity	1.76 ft/s
Segment Time of Concentration	0.019 hours
Segment #3: TR-55 Channel Flow	
Flow Area	1.2 ft²
Hydraulic Length	53.00 ft
Manning's n	0.015
Slope	0.005 ft/ft
Wetted Perimeter	3.90 ft
Average Velocity	3.20 ft/s
Segment Time of Concentration	0.005 hours
Segment #4: TR-55 Channel Flow	
Flow Area	1.8 ft ²
Hydraulic Length	287.00 ft
Manning's n	0.015
Slope	0.005 ft/ft
Wetted Perimeter	4.70 ft
Average Velocity	3.70 ft/s
Segment Time of Concentration	0.022 hours
	<u></u>
Segment #5: TR-55 Channel Flow	
Flow Area	3.1 ft ²
Hydraulic Length	119.00 ft
Manning's n	0.015
2024-07-31 WQ.ppc 8/21/2024	Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W
012112024	Watertown, CT 06795 USA +1-203-755-1666

Return Event: 1 years Storm Event: Gauged Event (1.3 in)

> PondPack CONNECT Edition [10.02.00.01] Page 10 of 35

Subsection: Time of Concentration Calculations Label: PDA-3 Imp Scenario: base

Segment #5: TR-55 Channel Flow	
Slope	0.005 ft/ft
Wetted Perimeter	6.30 ft
Average Velocity	4.38 ft/s
Segment Time of Concentration	0.008 hours
Time of Concentration (Composite)	
Time of Concentration (Composite)	0.083 hours

Return Event: 1 years Storm Event: Gauged Event (1.3 in)

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 11 of 35

Subsection: Time of Concentration Calculations Label: PDA-3 Imp Scenario: base

==== SCS Channel Flow

Tc =

R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =

Unpaved surface: V = 16.1345 * (Sf**0.5)

Paved Surface: V = 20.3282 * (Sf**0.5)

Where:

(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Sheet Flow

Tc =	(0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4))
Where:	Tc= Time of concentration, hours
	n= Manning's n
	Lf= Flow length, feet
	P= 2yr, 24hr Rain depth, inches
	Sf= Slope, %

2024-07-31 WQ.ppc 8/21/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 12 of 35

Subsection: Time of Concentration Calculations Label: PDA-4 Imp Scenario: base

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	1	
Hydraulic Length	100.00 ft	
Manning's n	0.011	
Slope	0.010 ft/ft	
2 Year 24 Hour Depth	3.40 in	
Average Velocity	1.07 ft/s	
Segment Time of Concentration	0.026 hours	
Segment #2: TR-55 Shallow Co	oncentrated Flow	
Hydraulic Length	265.00 ft	
Is Paved?	True	
Slope	0.010 ft/ft	
Average Velocity	2.03 ft/s	
Segment Time of Concentration	0.036 hours	
Time of Concentration (Compos	ite)	
Time of Concentration (Composite)	0.083 hours	

Subsection: Time of Concentration Calculations Label: PDA-4 Imp Scenario: base

==== SCS Channel Flow

R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =

Unpaved surface: V = 16.1345 * (Sf**0.5)

Paved Surface: V = 20.3282 * (Sf**0.5)

Where:

(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

2024-07-31 WQ.ppc 8/21/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 14 of 35

Subsection: Time of Concentration Calculations Label: PDA-7 Imp Scenario: base

Time of Concentration Results

Time of Concentration Results	
Segment #1: TR-55 Sheet Flow	
Hydraulic Length	68.00 ft
Manning's n	0.011
Slope	0.027 ft/ft
2 Year 24 Hour Depth	3.40 in
Average Velocity	1.48 ft/s
Segment Time of	0.013 hours
Concentration	
Segment #2: TR-55 Shallow Conce	ntrated Flow
Hydraulic Length	47.00 ft
Is Paved?	False
Slope	0.018 ft/ft
Average Velocity	2.16 ft/s
Segment Time of Concentration	0.006 hours
Segment #3: TR-55 Channel Flow	
Flow Area	1.2 ft²
Hydraulic Length	158.00 ft
Manning's n	0.015
Slope	0.005 ft/ft
Wetted Perimeter	3.90 ft
Average Velocity	3.20 ft/s
Segment Time of Concentration	0.014 hours
Concentration	
Segment #4: TR-55 Channel Flow	
Flow Area	1.8 ft²
Hydraulic Length	287.00 ft
Manning's n	0.015
Slope	0.005 ft/ft
Wetted Perimeter	4.70 ft
Average Velocity	3.70 ft/s
Segment Time of Concentration	0.022 hours
Segment #5: TR-55 Channel Flow	
Flow Area	3.1 ft ²
Hydraulic Length	119.00 ft
Manning's n	0.015
2024-07-31 WQ.ppc	Bentley Systems, Inc. Haestad Methods Solution Center
8/21/2024	27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Return Event: 1 years Storm Event: Gauged Event (1.3 in)

> PondPack CONNECT Edition [10.02.00.01] Page 15 of 35

Subsection: Time of Concentration Calculations Label: PDA-7 Imp Scenario: base

Segment #5: TR-55 Channel Flow	
Slope	0.005 ft/ft
Wetted Perimeter	6.30 ft
Average Velocity	4.38 ft/s
Segment Time of Concentration	0.008 hours
Time of Concentration (Composite)	
Time of Concentration (Composite)	0.083 hours

Return Event: 1 years Storm Event: Gauged Event (1.3 in)

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 16 of 35

Subsection: Time of Concentration Calculations Label: PDA-7 Imp Scenario: base

==== SCS Channel Flow

Tc =

R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =

Unpaved surface: $V = 16.1345 * (Sf^{**}0.5)$

Paved Surface: V = 20.3282 * (Sf**0.5)

Where:

(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Sheet Flow

Tc =	(0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4))
Where:	Tc= Time of concentration, hours
	n= Manning's n
	Lf= Flow length, feet
	P= 2yr, 24hr Rain depth, inches
	Sf= Slope, %

2024-07-31 WQ.ppc 8/21/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 17 of 35

Subsection: Time of Concentration Calculations Label: PDA-8 Imp Scenario: base

Time of Concentration Results

Segment #1: TR-55 Sheet Flow	
Hydraulic Length	100.00 ft
Manning's n	0.011
Slope	0.020 ft/ft
2 Year 24 Hour Depth	3.40 in
Average Velocity	1.42 ft/s
Segment Time of	0.020 hours
Concentration	
Segment #2: TR-55 Shallow Con	centrated Flow
Hydraulic Length	92.00 ft
Is Paved?	True
Slope	0.013 ft/ft
Average Velocity	2.29 ft/s
Segment Time of Concentration	0.011 hours
Segment #3: TR-55 Channel Flov	N
Flow Area	1.2 ft ²
Hydraulic Length	235.00 ft
Manning's n	0.015
Slope	0.009 ft/ft
Siope	
Wetted Perimeter	3.90 ft
•	3.90 ft 4.29 ft/s
Wetted Perimeter	
Wetted Perimeter Average Velocity Segment Time of	4.29 ft/s 0.015 hours

Subsection: Time of Concentration Calculations Label: PDA-8 Imp Scenario: base

==== SCS Channel Flow

R = Qa / Wp V = (1.49 * (R**(2/3)) * (Sf**-0.5)) / n

Where:

(Lf / V) / 3600 R= Hydraulic radius Aq= Flow area, square feet Wp= Wetted perimeter, feet V= Velocity, ft/sec Sf= Slope, ft/ft n= Manning's n Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Shallow Concentration Flow

Tc =

Unpaved surface: V = $16.1345 * (Sf^{**}0.5)$

Paved Surface: V = 20.3282 * (Sf**0.5)

Where:

(Lf / V) / 3600 V= Velocity, ft/sec Sf= Slope, ft/ft Tc= Time of concentration, hours Lf= Flow length, feet

==== SCS TR-55 Sheet Flow

Tc =	(0.007 * ((n * Lf)**0.8)) / ((P**0.5) * (Sf**0.4))
Where:	Tc= Time of concentration, hours
	n= Manning's n
	Lf= Flow length, feet
	P= 2yr, 24hr Rain depth, inches
	Sf= Slope, %

2024-07-31 WQ.ppc 8/21/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 19 of 35

Subsection: Unit Hydrograph Summary Label: PDA 8A Imp Scenario: base

Return Event: 1 years Storm Event: Gauged Event (1.3 in)

Storm Event	Gauged Event (1.3 in)	
Return Event	1 years	
Duration	120.000 hours	
Depth	1.25 in	
Time of Concentration	0.083 hours	
(Composite)		
Area (User Defined)	0.470 acres	
Computational Time		
Increment	0.011 hours	
Time to Peak (Computed)	1.100 hours	
Flow (Peak, Computed)	1.20 ft ³ /s	
Output Increment	0.050 hours	
Time to Flow (Peak Interpolated Output)	1.100 hours	
Flow (Peak Interpolated Output)	1.20 ft ³ /s	
Drainage Area		
SCS CN (Composite)	98.000	
Area (User Defined)	0.470 acres	
Maximum Retention (Pervious)	0.20 in	
Maximum Retention (Pervious, 20 percent)	0.04 in	
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	1.03 in	
Runoff Volume (Pervious)	1,765.08 ft ³	
Hydrograph Volume (Area	under Hydrograph curve)	
Volume	1,766.00 ft ³	
SCS Unit Hydrograph Para	meters	
Time of Concentration (Composite)	0.083 hours	
Computational Time Increment	0.011 hours	
Unit Hydrograph Shape Factor	284.057	
K Factor	0.440	
Bentley System	ns, Inc. Haestad Methods Solution Center	

2024-07-31 WQ.ppc 8/21/2024

Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 20 of 35

Subsection: Unit Hydrograph Summary Label: PDA 8A Imp Scenario: base Return Event: 1 years Storm Event: Gauged Event (1.3 in)

SCS Unit Hydrograph Parameters	
Receding/Rising, Tr/Tp	3.544
Unit peak, qp	3.73 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.489 hours
Total unit time, Tb	0.544 hours

2024-07-31 WQ.ppc 8/21/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 21 of 35 Subsection: Unit Hydrograph Summary Label: PDA 8B Imp Scenario: base

Return Event: 1 years Storm Event: Gauged Event (1.3 in)

Storm Event	Gauged Event (1.3 in)
Return Event	1 years
Duration	120.000 hours
Depth	1.25 in
Time of Concentration	0.083 hours
(Composite)	
Area (User Defined)	0.270 acres
Computational Time	
Increment	0.011 hours
Time to Peak (Computed)	1.100 hours
Flow (Peak, Computed)	0.69 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	1.100 hours
Flow (Peak Interpolated Output)	0.69 ft³/s
Drainage Area	
SCS CN (Composite)	98.000
Area (User Defined)	0.270 acres
Maximum Retention (Pervious)	0.20 in
Maximum Retention (Pervious, 20 percent)	0.04 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.03 in
Runoff Volume (Pervious)	1,013.98 ft ³
Hydrograph Volume (Area	under Hydrograph curve)
Volume	1,014.00 ft ³
SCS Unit Hydrograph Para	ameters
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	284.057
K Factor	0.440
Bentley Syster	ns, Inc. Haestad Methods Solution Center

2024-07-31 WQ.ppc 8/21/2024

Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 22 of 35

Subsection: Unit Hydrograph Summary Label: PDA 8B Imp Scenario: base

Return Event: 1 years Storm Event: Gauged Event (1.3 in)

SCS Unit Hydrograph Parameters	3
Receding/Rising, Tr/Tp	3.544
Unit peak, qp	2.14 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.489 hours
Total unit time, Tb	0.544 hours

2024-07-31 WQ.ppc 8/21/2024

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

PondPack CONNECT Edition [10.02.00.01] Page 23 of 35

Subsection: Unit Hydrograph Summary Label: PDA1-Imp Scenario: base Return Event: 1 years Storm Event: Gauged Event (1.3 in)

Storm Event	Gauged Event (1.3 in)	
Return Event	1	years
Duration	120.000	hours
Depth	1.25	in
Time of Concentration	0.083	hours
(Composite) Area (User Defined)	0.140	acros
Alea (Oser Defined)	0.140	acres
Computational Time	0.011	houre
Increment	0.011	nours
Time to Peak (Computed)	1.100	hours
Flow (Peak, Computed)	0.36	ft³/s
Output Increment	0.050	hours
Time to Flow (Peak Interpolated Output)	1.100	hours
Flow (Peak Interpolated Output)	0.36	ft³/s
Drainage Area		
SCS CN (Composite)	98.000	
Area (User Defined)	0.140	acres
Maximum Retention (Pervious)	0.20	in
Maximum Retention (Pervious, 20 percent)	0.04	in
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	1.03	in
Runoff Volume (Pervious)	525.77	ft³
Hydrograph Volume (Area	under Hydrograph c	urve)
Volume	526.00	ft³
SCS Unit Hydrograph Para	meters	
Time of Concentration (Composite)	0.083	hours
Computational Time Increment	0.011	hours
Unit Hydrograph Shape Factor	284.057	
K Factor	0.440	
Bentley System	ns, Inc. Haestad Methods Center	Solution

2024-07-31 WQ.ppc 8/21/2024 Center Systems, inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 24 of 35

Subsection: Unit Hydrograph Summary Label: PDA1-Imp Scenario: base Return Event: 1 years Storm Event: Gauged Event (1.3 in)

SCS Unit Hydrograph Parameters	i
Receding/Rising, Tr/Tp	3.544
Unit peak, gp	1.11 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.489 hours
Total unit time, Tb	0.544 hours

2024-07-31 WQ.ppc 8/21/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 25 of 35 Subsection: Unit Hydrograph Summary Label: PDA-2 Imp Scenario: base Return Event: 1 years Storm Event: Gauged Event (1.3 in)

Storm Event	Gauged Event (1.3 in)
Return Event	1 years
Duration	120.000 hours
Depth	1.25 in
Time of Concentration	0.113 hours
(Composite)	
Area (User Defined)	1.450 acres
Computational Time	0 0 / T
Increment	0.015 hours
Time to Peak (Computed)	1.120 hours
Flow (Peak, Computed)	3.27 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	1.100 hours
Flow (Peak Interpolated Output)	3.23 ft³/s
Drainage Area	
SCS CN (Composite)	98.000
Area (User Defined)	1.450 acres
Maximum Retention (Pervious)	0.20 in
Maximum Retention (Pervious, 20 percent)	0.04 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.03 in
Runoff Volume (Pervious)	5,445.47 ft ³
Hydrograph Volume (Area u	nder Hydrograph curve)
Volume	5,446.00 ft ³
SCS Unit Hydrograph Paran	neters
Time of Concentration (Composite)	0.113 hours
Computational Time Increment	0.015 hours
Unit Hydrograph Shape Factor	284.057
K Factor	0.440
Bentley Systems	s, Inc. Haestad Methods Solution Center

PondPack CONNECT Edition [10.02.00.01] Page 26 of 35

2024-07-31 WQ.ppc 8/21/2024 Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Unit Hydrograph Summary Label: PDA-2 Imp Scenario: base Return Event: 1 years Storm Event: Gauged Event (1.3 in)

SCS Unit Hydrograph Parameter	S
Receding/Rising, Tr/Tp	3.544
Unit peak, qp	8.44 ft ³ /s
Unit peak time, Tp	0.076 hours
Unit receding limb, Tr	0.666 hours
Total unit time, Tb	0.741 hours

2024-07-31 WQ.ppc 8/21/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 27 of 35 Subsection: Unit Hydrograph Summary Label: PDA-3 Imp Scenario: base Return Event: 1 years Storm Event: Gauged Event (1.3 in)

Storm Event	Gauged Event (1.3 in)
Return Event	1 years
Duration	120.000 hours
Depth	1.25 in
Time of Concentration	0.083 hours
(Composite)	
Area (User Defined)	1.390 acres
Computational Time	
Increment	0.011 hours
Time to Peak (Computed)	1.100 hours
Flow (Peak, Computed)	3.54 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	1.100 hours
Flow (Peak Interpolated Output)	3.54 ft ³ /s
Drainage Area	
SCS CN (Composite)	98.000
Area (User Defined)	1.390 acres
Maximum Retention (Pervious)	0.20 in
Maximum Retention (Pervious, 20 percent)	0.04 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.03 in
Runoff Volume (Pervious)	5,220.14 ft ³
Hydrograph Volume (Area u	nder Hydrograph curve)
Volume	5,222.00 ft ³
SCS Unit Hydrograph Parar	neters
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	284.057
K Factor	0.440
Bentley Systems	s, Inc. Haestad Methods Solution Center

PondPack CONNECT Edition [10.02.00.01] Page 28 of 35

2024-07-31 WQ.ppc 8/21/2024

Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Unit Hydrograph Summary Label: PDA-3 Imp Scenario: base Return Event: 1 years Storm Event: Gauged Event (1.3 in)

SCS Unit Hydrograph Parameters	;
Receding/Rising, Tr/Tp	3.544
Unit peak, qp	11.03 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.489 hours
Total unit time, Tb	0.544 hours

2024-07-31 WQ.ppc 8/21/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 29 of 35 Subsection: Unit Hydrograph Summary Label: PDA-4 Imp Scenario: base Return Event: 1 years Storm Event: Gauged Event (1.3 in)

Storm Event	Gauged Event (1.3 in)
Return Event	1 years
Duration	120.000 hours
Depth	1.25 in
Time of Concentration	0.083 hours
(Composite)	
Area (User Defined)	0.860 acres
Computational Time	
Increment	0.011 hours
Time to Peak (Computed)	1.100 hours
Flow (Peak, Computed)	2.19 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	1.100 hours
Flow (Peak Interpolated Output)	2.19 ft³/s
Drainage Area	
SCS CN (Composite)	98.000
Area (User Defined)	0.860 acres
Maximum Retention (Pervious)	0.20 in
Maximum Retention (Pervious, 20 percent)	0.04 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.03 in
Runoff Volume (Pervious)	3,229.73 ft ³
Hydrograph Volume (Area	under Hydrograph curve)
Volume	3,231.00 ft ³
SCS Unit Hydrograph Para	meters
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	284.057
K Factor	0.440
Bentley System	is, Inc. Haestad Methods Solution Center

PondPack CONNECT Edition [10.02.00.01] Page 30 of 35

2024-07-31 WQ.ppc 8/21/2024 Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Unit Hydrograph Summary Label: PDA-4 Imp Scenario: base Return Event: 1 years Storm Event: Gauged Event (1.3 in)

SCS Unit Hydrograph Parameter	S
Receding/Rising, Tr/Tp	3.544
Unit peak, qp	6.82 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.489 hours
Total unit time, Tb	0.544 hours

2024-07-31 WQ.ppc 8/21/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 31 of 35 Subsection: Unit Hydrograph Summary Label: PDA-7 Imp Scenario: base Return Event: 1 years Storm Event: Gauged Event (1.3 in)

Storm Event	Gauged Event (1.3 in)
Return Event	1 years
Duration	120.000 hours
Depth	1.25 in
Time of Concentration	0.083 hours
(Composite)	
Area (User Defined)	0.130 acres
Computational Time	
Increment	0.011 hours
Time to Peak (Computed)	1.100 hours
Flow (Peak, Computed)	0.33 ft ³ /s
Output Increment	0.050 hours
Time to Flow (Peak Interpolated Output)	1.100 hours
Flow (Peak Interpolated Output)	0.33 ft³/s
Drainage Area	
SCS CN (Composite)	98.000
Area (User Defined)	0.130 acres
Maximum Retention (Pervious)	0.20 in
Maximum Retention (Pervious, 20 percent)	0.04 in
Cumulative Runoff	
Cumulative Runoff Depth (Pervious)	1.03 in
Runoff Volume (Pervious)	488.21 ft ³
Hydrograph Volume (Area u	under Hydrograph curve)
Volume	488.00 ft ³
SCS Unit Hydrograph Para	neters
Time of Concentration (Composite)	0.083 hours
Computational Time Increment	0.011 hours
Unit Hydrograph Shape Factor	284.057
K Factor	0.440
Bentley System	s, Inc. Haestad Methods Solution Center

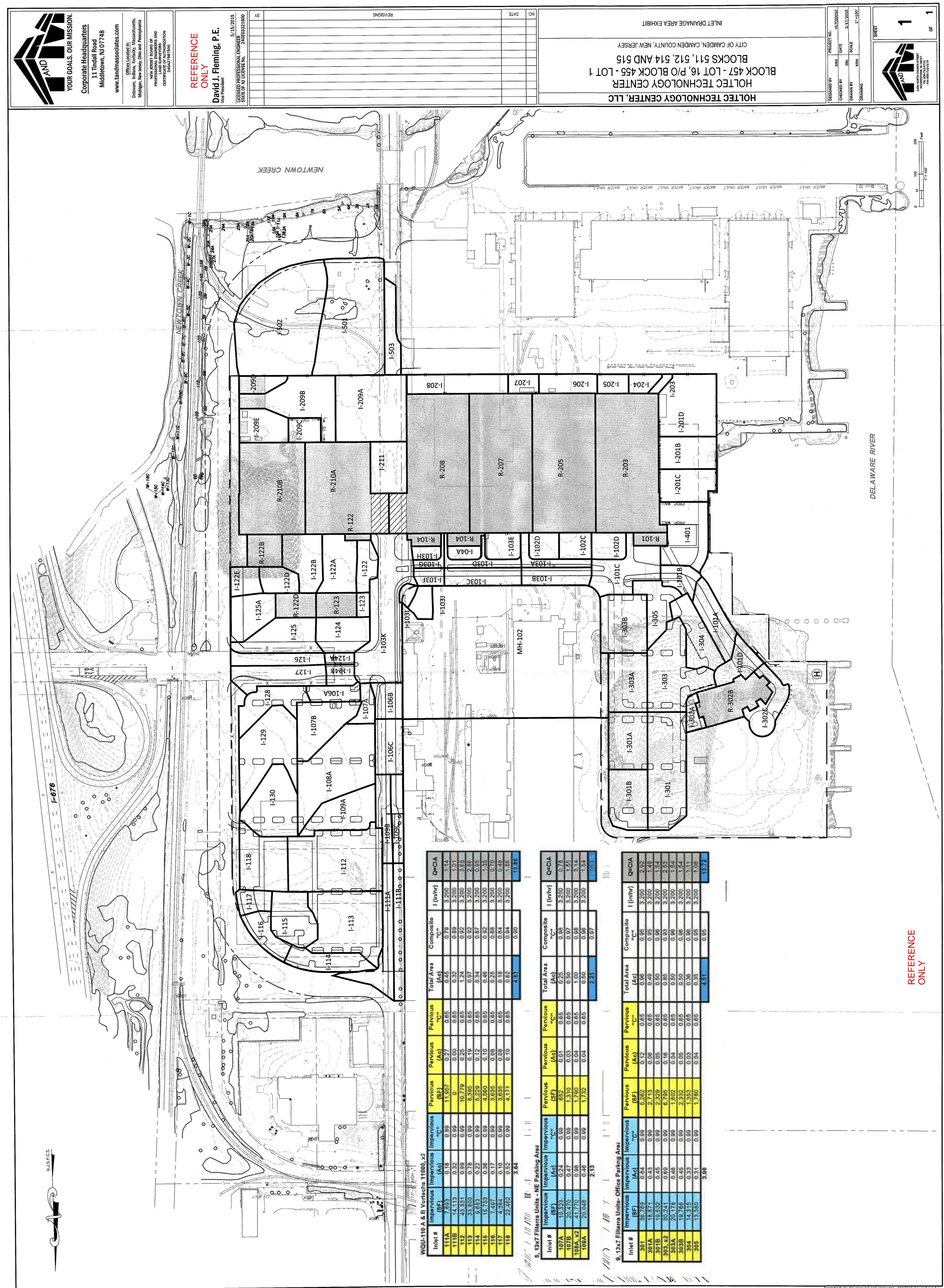
2024-07-31 WQ.ppc 8/21/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 32 of 35

Subsection: Unit Hydrograph Summary Label: PDA-7 Imp Scenario: base Return Event: 1 years Storm Event: Gauged Event (1.3 in)

SCS Unit Hydrograph Parameter	S
Receding/Rising, Tr/Tp	3.544
Unit peak, qp	1.03 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.489 hours
Total unit time, Tb	0.544 hours

2024-07-31 WQ.ppc 8/21/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 33 of 35 Subsection: Unit Hydrograph Summary Label: PDA-8 Imp Scenario: base Return Event: 1 years Storm Event: Gauged Event (1.3 in)

Storm Event	Gauged Event (1.3 in)	
Return Event	1 years	
Duration	120.000 hours	
Depth	1.25 in	
Time of Concentration	0.083 hours	
(Composite)		
Area (User Defined)	0.700 acres	
Computational Time		
Increment	0.011 hours	
Time to Peak (Computed)	1.100 hours	
Flow (Peak, Computed)	1.78 ft³/s	
Output Increment	0.050 hours	
Time to Flow (Peak Interpolated Output)	1.100 hours	
Flow (Peak Interpolated Output)	1.78 ft³/s	
Drainage Area		
SCS CN (Composite)	98.000	
Area (User Defined)	0.700 acres	
Maximum Retention (Pervious)	0.20 in	
Maximum Retention (Pervious, 20 percent)	0.04 in	
Cumulative Runoff		
Cumulative Runoff Depth (Pervious)	1.03 in	
Runoff Volume (Pervious)	2,628.85 ft ³	
Hydrograph Volume (Area u	nder Hydrograph curve)	
Volume	2,630.00 ft ³	
SCS Unit Hydrograph Paran	neters	
Time of Concentration (Composite)	0.083 hours	
Computational Time Increment	0.011 hours	
Unit Hydrograph Shape Factor	284.057	
K Factor	0.440	
Bentley Systems	, Inc. Haestad Methods Solution Center	Ì


PondPack CONNECT Edition [10.02.00.01] Page 34 of 35

2024-07-31 WQ.ppc 8/21/2024 Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Subsection: Unit Hydrograph Summary Label: PDA-8 Imp Scenario: base Return Event: 1 years Storm Event: Gauged Event (1.3 in)

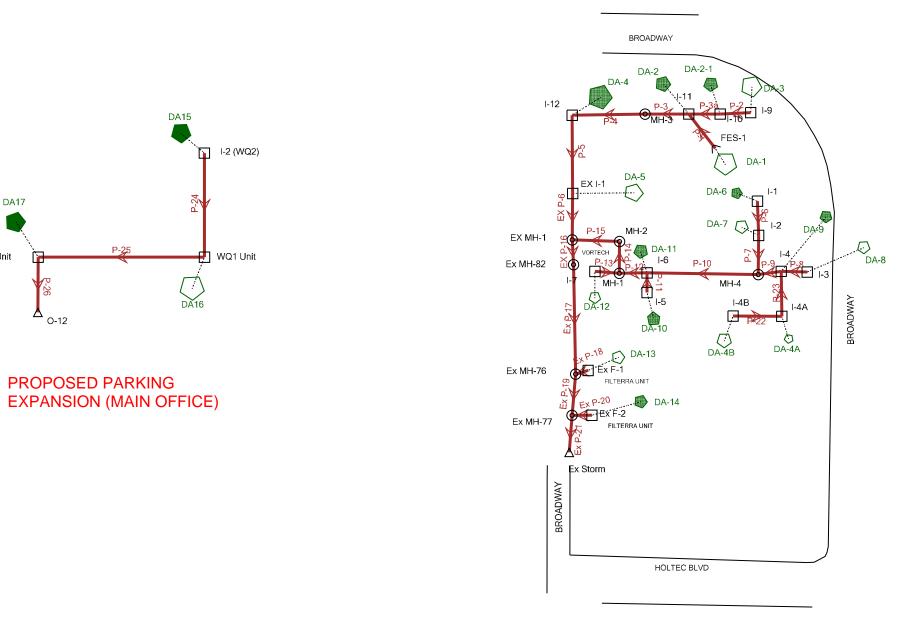
SCS Unit Hydrograph Parameters	3
Receding/Rising, Tr/Tp	3.544
Unit peak, qp	5.55 ft ³ /s
Unit peak time, Tp	0.056 hours
Unit receding limb, Tr	0.489 hours
Total unit time, Tb	0.544 hours

2024-07-31 WQ.ppc 8/21/2024 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 PondPack CONNECT Edition [10.02.00.01] Page 35 of 35

Copyright 2013, T&M Associates — All Rights Reserved. The copyride or Reuse of This Document or portions thereof, for other than the original project or the purpose originally intended, without the written permission of T&M Associates is prohibited. u:/Hltc/00010/pigna/NJDEP Sudmission/Xref/Hltc00010_prop_Ares.dwg

Appendix B

DA15


P-25

DA17

∆ ₀₋₁₂

PROPOSED PARKING

EX WQ Unit

PROPOSED OFFICE BUILDING

StormCAD [10.03.04.53] Page 1 of 1

Conduit FlexTable: Combined Pipe/Node Report

												-	•									
Label	Start Node	Stop Node	Upstream	System	System	Length	Slope	Dia.	Conduit	Material	Manning's	Flow	Capacity	V	Invert	Invert	Cover	Cover	Elevation	Elevation	Hydraulic	Hydraulic
			Inlet Area	Flow Time	Intensity	(Unified)	(Calc)	(in)	Description		n	(cfs)	(Full Flow)	(ft/s)	(Start)	(Stop)	(Start)	(Stop)	Ground	Ground	Grade Line	Grade Line
			(acres)	(min)	(in/h)	(ft)	(ft/ft)						(cfs)		(ft)	(ft)	(ft)	(ft)	(Start)	(Stop)	(In)	(Out)
																			(ft)	(ft)	(ft)	(ft)
EX P-6	EX I-1	EX MH-1	0.130	6.67	7.0	74.0	0.0020		Circle - 30.0 in	Concrete	0.013	11.50	18.47	3.97	5.25	5.10	2.44	6.17	10.19	13.77	6.95	6.88
EX P-16	EX MH-1	Ex MH-82	(N/A)	11.23	5.6	9.7	0.0103		Circle - 30.0 in	Concrete	0.013	20.68	41.70	8.48	5.10	5.00	6.17	6.25	13.77	13.75	6.88	6.92
Ex P-17	Ex MH-82	Ex MH-76	(N/A)	11.25	5.6	213.0	0.0028	30.0	Circle - 30.0 in	Concrete	0.013	20.67	21.59	5.01	5.00	4.41	6.25	4.15	13.75	11.06	6.92	6.18
Ex P-18	Ex F-1	Ex MH-76	0.370	5.00	7.6	10.0	0.1150	15.0	Circle - 15.0 in	Concrete	0.013	2.42	21.91	11.75	7.61	6.46	1.70	3.35	10.56	11.06	8.23	6.79
Ex P-19	Ex MH-76	Ex MH-77	(N/A)	11.95	5.4	74.0	0.0039	30.0	Circle - 30.0 in	Concrete	0.013	21.93	25.68	5.88	4.41	4.12	4.15	4.00	11.06	10.62	6.18	5.87
Ex P-20	Ex F-2	Ex MH-77	0.750	5.00	7.6	21.0	0.0024	15.0	Circle - 15.0 in	Concrete	0.013	4.91	3.15	4.00	6.67	6.62	2.02	2.75	9.94	10.62	7.78	7.52
Ex P-21	Ex MH-77	Ex Storm	(N/A)	12.16	5.4	190.0	0.0054	30.0	Circle - 30.0 in	Concrete	0.013	25.25	30.05	6.86	4.12	3.10	4.00	4.40	10.62	10.00	5.87	4.81
P-1	FES-1	I-11	0.300	5.00	7.6	55.0	0.0105	15.0	Circle - 15.0 in	Concrete	0.015	1.62	5.75	4.02	8.39	7.81	1.86	1.66	11.50	10.72	8.89	8.43
P-2	I-9	I-10	0.400	5.00	7.6	24.0	0.0050	15.0	Circle - 15.0 in	Concrete	0.015	2.16	3.96	3.29	8.02	7.90	1.49	1.58	10.76	10.73	8.67	8.49
P-3	I-11	MH-3	0.710	5.23	7.6	77.0	0.0040	24.0	Circle - 24.0 in	Concrete	0.015	9.85	12.44	4.39	7.06	6.75	1.66	3.07	10.72	11.82	8.43	8.17
P-3a	I-10	I-11	0.250	5.12	7.6	17.0	0.0053	18.0	Circle - 18.0 in	Concrete	0.015	3.67	6.62	3.85	7.65	7.56	1.58	1.66	10.73	10.72	8.48	8.43
P-4	MH-3	I-12	(N/A)	5.52	7.4	178.0	0.0035	24.0	Circle - 24.0 in	Concrete	0.015	9.71	11.57	4.13	6.75	6.13	3.07	3.38	11.82	11.51	8.17	7.63
P-5	I-12	EX I-1	0.260	6.24	7.2	109.0	0.0035	24.0	Circle - 24.0 in	Concrete	0.015	11.06	11.58	4.19	6.13	5.75	3.38	2.44	11.51	10.19	7.63	6.95
P-6	I-1	I-2	0.280	5.00	7.6	108.0	0.0050	15.0	Circle - 15.0 in	Concrete	0.015	1.72	3.96	3.12	9.41	8.87	1.75	1.75	12.41	11.87	10.62	10.52
P-7	I-2	MH-4	0.340	5.58	7.4	83.0	0.0049	15.0	Circle - 15.0 in	Concrete	0.013	3.71	4.54	3.03	8.87	8.46	1.75	3.69	11.87	13.40	10.52	10.24
P-8	I-3	I-4	0.440	5.00	7.6	24.0	0.0050	15.0	Circle - 15.0 in	Concrete	0.015	2.88	3.96	2.35	8.73	8.61	2.83	2.95	12.81	12.81	10.53	10.47
P-9	I-4	MH-4	0.320	9.50	6.0	29.0	0.0021	15.0	Circle - 15.0 in	Concrete	0.015	4.91	2.55	4.00	8.61	8.55	2.95	3.60	12.81	13.40	10.47	10.24
P-10	MH-4	I-6	(N/A)	9.63	5.9	287.0	0.0047	18.0	Circle - 18.0 in	Concrete	0.015	7.84	6.22	4.44	8.21	6.87	3.69	4.19	13.40	12.56	10.24	7.96
P-11	I-5	I-6	0.090	5.00	7.6	24.0	0.0050	15.0	Circle - 15.0 in	Concrete	0.015	0.66	3.96	2.39	7.24	7.12	3.94	4.19	12.43	12.56	7.75	7.74
P-12	I-6	MH-1	0.460	10.70	5.7	22.0	0.0050	24.0	Circle - 24.0 in	Concrete	0.015	10.35	13.86	4.84	6.37	6.26	4.19	4.42	12.56	12.68	7.74	7.67
P-13	I-7	MH-1	0.270	5.00	7.6	22.0	-0.0877	15.0	Circle - 15.0 in	Concrete	0.015	1.87	16.58	1.52	7.12	9.05	3.69	2.38	12.06	12.68	9.80	9.59
P-14	MH-1	MH-2	(N/A)	10.78	5.7	97.0	0.0049	24.0	Circle - 24.0 in	Concrete	0.015	11.71	13.79	4.93	6.26	5.78	4.42	5.86	12.68	13.64	7.67	7.01
P-15	MH-2	EX MH-1	(N/A)	11.11	5.6	36.0	0.0050	30.0	Circle - 30.0 in	Concrete	0.015	11.59	25.13	5.02	5.28	5.10	5.86	6.17	13.64	13.77	6.90	6.88
P-22	I-4B	I-4A	0.140	5.00	7.6	50.0	0.0050	15.0	Circle - 15.0 in	Concrete	0.015	0.32	3.96	0.26	9.25	9.00	1.97	3.30	12.47	13.55	10.50	10.50
P-23	I-4A	I-4	0.150	8.16	6.5	79.0	0.0049		Circle - 15.0 in	Concrete	0.015	1.20	3.93	0.98	9.00	8.61	3.30	2.95	13.55	12.81	10.50	10.47
P-24	I-2 (WQ2)	WQ1 Unit	0.530	5.00	7.6	146.0	0.0101	15.0	Circle - 15.0 in	Concrete	0.015	3.67	5.62	4.88	7.95	6.48	3.49	6.15	12.69	13.88	8.72	7.61
P-25	WQ1 Unit	EX WQ Unit	0.300	5.50	7.5	234.0	0.0088	15.0	Circle - 15.0 in	Concrete	0.015	5.61	5.25	4.80	6.48	4.42	6.15	5.50	13.88	11.17	7.61	5.52
P-26	EX WQ Unit	0-12	0.770	6.31	7.2	179.0	0.0113		Circle - 18.0 in	Concrete	0.013	10.66	11.16	7.19	4.27	2.25	5.40	7.25	11.17	11.00	5.52	3.42
-		1			.=									-		÷			= -			

NOTE: EXISTING PIPE CONDUITS DESIGNED IN 2015 WITH A MANNING'S N=0.013

USATX22001

25-YEAR STORM RUNOFF CALCULATIONS HOLTEC OFFICE BUILDING CITY OF CAMDEN, CAMDEN CO., NJ

											Hydr	Hydrologic Soils Group	oils Gre	dna
	Impervious	Impervious	Impervious Pervious Area	Pervious		Total Area	Total Area Total Area		rand use	nescription	A	B	U	٥
Inlet Area	Area (SF)	Area (AC)	(SF)	Area (AC)	U	(SF)	(AC)	Q (cfs)	Cultivated Land	without conservation treatment	0.49	0.67 0	0.81 (0.88
Approved Design*	231739	5.32	45302	1.04	0.945	277041	6.36	39.67	10	with conservation treatment	0.27	0.43 0		0.67
City Provide		10 4	1,000		500 0	102120	5		Pasture or Range Land	poor condition	0.38	0.63 0	0.78 (0.84
Proposed site	7 / D418	cU.4	71555	2.28	0.891	CE/C/7	0.33	31.22	Meadow	good condition	1	0.25 0	0.51 (0.65
										good condition	1		0.41 (0.61
									Wood or Forest Land	thin stand, poor cover, no mulch	1	0.34 0	0.59 (0.70
								1		good cover	1	0	0.45 (0.59
									Open Spaces, Lawns, Parks, Golf Courses, Cemeteries Good Condition	, grass cover on 75% or more	1	0.25 0.51		0.65
* Holtec Technology Center project 2016	· Center project 2	2016							Fair Condition	%c/ o1 %nc uo Javos ssag		20.U C4.U		U. /4
Impositions Area Dupoff Coofficient = 00	- the Coofficient =	00												

* Holtec Technology Center project 2010 Impervious Area Runoff Coefficient - .99 Pervious Area Runoff Coefficient = .65 Antecedent=1.1

Q = ciA

6.6 in/hr 10 min 25yr storm (Impervious Area x .99 + Pervious Area x .65 x 1.1)/Total Area Total Area a c ⊨

	Cultivated Land	without conservation treatment	0.49	0.67	0.81	0.88
T		with conservation treatment	0.27	0.43	0.67	0.67
-	Pasture or Range Land	poor condition	0.38	0.63	0.78	0.84
_	Meadow	good condition	1	0.25	0.51	0.65
		good condition		-	0.41	0.61
-	Wood or Forest Land	thin stand, poor cover, no mulch	1	0.34	0.59	0.70
		good cover	ļ	1	0.45	0.59
	Open Spaces, Lawns, Parks,					
	Golf Courses, Cemeteries			100	1	1
	Good Condition	grass cover on /5% or more	l	67.0	15.0	C.65
	Fair Condition	%c/ 01 %nc uo 10%nc uo	1	C+.U	50.U C4.U	n.74
	mercial and	Business 85% impervious	0.84	06.0	0.93	96.0
	Area					
	Industrial Districts	72% impervious	0.67	0.81	0.88	0.92
	Residential	average % impervious				
	Average Lot Size (acres)					
	1/8	65	0.59	0.76	0.86	06.0
	1/4	38	0.29	0.55	0.70	0.80
	1/3	30	1	0.49	0.67	0.78
	1/2	25	1	0.45	0.65	0.76
	1	20	1	0.41	0.63	0.74
	Paved Areas	parking lots, roofs, driveways,	66.0	66.0	66.0	0.99

0.99 0.88 0.84

0.99 0.84 0.80 0.76 0.76 0.69

0.99 0.57 0.49

paved with curbs & storm sewers gravel dirt

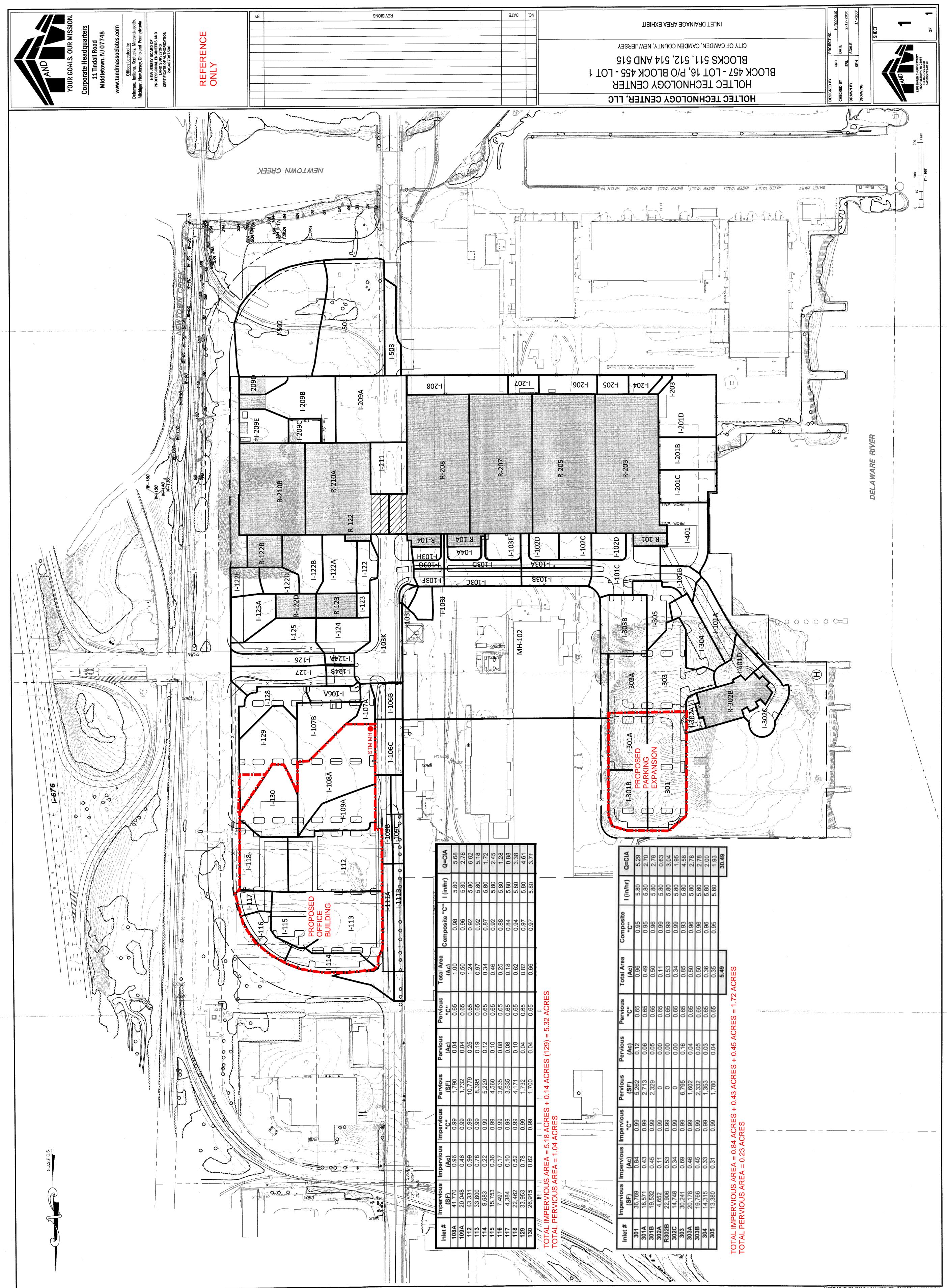
Streets and Roads

August 20, 2024

USATX22001

25-YEAR STORM RUNOFF CALCULATIONS HOLTEC PARKING EXPANSION CITY OF CAMDEN, CAMDEN CO., NJ

Group	٥	0.88	0.67	0.84	C0.0	0.61	0.70	0.59		0.65	U.74		0.96
Hydrologic Soils Group	U	0.81	0.67		TC'D	0.41	0.59	0.45		0.25 0.51 0.65	co.u		0.90 0.93
rologic	8	0.67	0.43	0.63	CZ.U	1	0.34	1		0.25	co.u ct.u		06.0
Hydi	A	0.49	0.27	0.38	1	1	1	1		I	1		0.84
	nescription	without conservation treatment	with conservation treatment	poor condition		good condition	thin stand, poor cover, no mulch	good cover		grass cover on 75% or more	grass cover on ouver to 70%		85% impervious
	rand use	Cultivated Land		Pasture or Range Land	Meddow		Wood or Forest Land		Open Spaces, Lawns, Parks, Golf Courses Comptanies	Good Condition	Fair condition		Commercial and Business 85% impervious
		Q (cfs)	12.34	10.18									
	Total Area	(AC)	6.36	1.61	1								
	Total Area Total Area	(SF)	85176	69973									
		U	0.294	0.958									
	Pervious	Area (AC)	0.236	0.15									
	Impervious Impervious Pervious Area	(SF)	10304	6736									
	Impervious	Area (AC)	1.72	1.45							016	66.	
	Impervious	Area (SF)	74872	63237							Center project 2	off Coefficient =	t Coefficient = 6^{t}
		Inlet Area	Approved Design*	Proposed Site							* Holtec Technology Center project 2016	Impervious Area Runoff Coefficient = .99	Pervious Area Runoff Coefficient = 65


* Holtec Technology Center project 2016 Impervious Area Runoff Coefficient = .99 Pervious Area Runoff Coefficient = .65 Antecedent=1.1

Q = ciA

ω.ο ιη/ nr 10 min 25yr storm (Impervious Area x .99 + Pervious Area x .65 x 1.1)/Total Area Total Area a c ≡

0.74

out conservation treatment 0.49 0.67 0.81 constervation treatment 0.23 0.67 0.81 condition 0.23 0.63 0.67 d condition 0.23 0.53 0.51 d condition 0.24 0.53 0.51 d condition 0.25 0.51 0.55 d condition 0.24 0.59 0.51 d cover 0.24 0.59 0.51 d cover 0.25 0.51 0.55 0.51 s cover on 75% or more 0.24 0.59 0.51 0.55 s cover on 75% or more 0.24 0.59 0.51 0.55 s cover on 75% or more 0.24 0.50 0.51 0.55 s cover on 55% or more 0.26 0.81 0.83 0.55 0.75 s cover on 55% or more 0.67 0.81 0.65 0.65 0.75 s cover on 55% or more 0.67 0.81 0.69 0.67 s impervious 0.					•	
with conservation treatment 0.27 0.43 0.67 poor condition 0.38 0.63 0.78 pood condition 0.34 0.53 0.51 pood condition 0.34 0.55 0.51 pood condition 0.34 0.55 0.51 print stard, poor cover, no mulch 0.55 prass cover on 75% or more 0.25 0.51 prass cover on 75% or more 0.25 0.51 prass cover on 70% to 75% 0.45 0.93 prass cover on 70% to 75% 0.45 0.93 prass cover on 50% to 75% 0.43 0.93 prass cover on 50% to 75% 0.45 0.93 prass cover on 50% to 75% 0.41 0.93 prass cover on 50% to 75% 0.45 0.93 prass cover on 50% to 75% 0.41 0.65 press cover on 50% to 75% 0.41 0.65 press cover on 50%		without conservation treatment	0.49	0.67	0.81	0.88
poor condition 0.3 0.63 0.78 good condition 0.45 0.45 good condition 0.45 0.45 thin stand, poor cover, no mulch 0.3 0.55 trks, 0.34 condition 0.34 condition 0.45 trks, 0.35 cover on 75% or more 0.34 condition 0.45 trks, 0.35 cover on 75% or more 0.34 condition 0.45 trks, 0.35 cover on 75% or more 0.43 condition 0.43 trks, 0.35 cover on 30% to 70% 0.34 condition 0.35 0.51 trks, 0.35 cover on 30% to 70% 0.34 condition 0.38 0.35 0.36 trks, 0.35 cover on 30% to 70% 0.35 cover 0.30 0.36 0.37 0.38 trks, 0.35 cover 0.35 0.35 cover 0.35 0.36 0.36 0.37 trks, 0.35 cover 0.35 0.36 0.36 0.39 0.39 0.39 trks, 0.35 c		with conservation treatment	0.27	0.43	0.67	0.67
good condition 0.25 0.21 thin stand, poor cover, no mulch 0.41 0.45 thin stand, poor cover, no mulch 0.34 0.55 good condition 0.34 0.55 grass cover on 75% or more 0.25 0.51 grass cover on 75% or more 0.25 0.51 grass cover on 30% to 73% 0.25 0.51 grass cover on 30% to 73% 0.25 0.51 grass cover on 30% to 73% 0.25 0.51 ness 85% impervious 0.84 0.90 0.93 z72% impervious 0.67 0.81 0.86 average % impervious 0.67 0.86 0.55 38 0.29 0.57 0.86 38 0.29 0.57 0.86 38 0.45 0.65 0.70 38 0.45 0.65 0.75 38 <t< td=""><td></td><td>poor condition</td><td>0.38</td><td>0.63</td><td>0.78</td><td>0.84</td></t<>		poor condition	0.38	0.63	0.78	0.84
Ithin stand, poor cover, no mulch 0.34 0.59 good cover 0.45 0.45 grass cover on 75% or more 0.25 0.51 grass cover on 75% or more 0.25 0.51 grass cover on 75% or more 0.25 0.51 grass cover on 30% to 73% 0.20 0.93 ness 85% impervious 0.84 0.90 0.93 72% impervious 0.67 0.81 0.88 average % impervious 0.67 0.86 0.76 average % impervious 0.67 0.86 0.65 26 0.40 0.67 0.86 27 0.49 0.67 0.65 26 0.40 0.99 0.99 27 0.49 0.69 0.99 26 0.49 0.99 0.99 27 0.49 0.99 0.99 26<		good condition acod condition		0.25	0.51	0.61
qood cover 0.45 grass cover on 75% or more 0.25 0.51 grass cover on 75% or more 0.25 0.51 grass cover on 75% or more 0.25 0.51 grass cover on 75% or more 0.45 0.51 ness 55% impervious 0.84 0.90 0.93 ness 65% impervious 0.67 0.81 0.88 average % impervious 0.67 0.81 0.86 average % impervious 0.67 0.81 0.65 25 0.45 0.65 0.70 26 0.70 0.29 0.55 0.76 26 0.70 0.29 0.55 0.76 26 0.70 0.29 0.55 0.75 26 0.70 0.29 0.59 0.55 26 0.70 0.29 0.59 0.59 27 0.39 0.39 0.39 26 0.7		thin stand, poor cover, no mulch	1	0.34	0.59	0.70
irrks, grass cover on 75% or more grass cover on 75% or more 0.25 0.51 grass cover on 75% or more grass cover on 70% to 75% 0.25 0.51 ness 65% impervious 0.84 0.90 0.93 72% impervious 0.84 0.90 0.93 72% impervious 0.67 0.81 0.88 8 average % impervious 0.67 0.81 0.65 38 0.70 0.25 0.70 38 0.79 0.29 0.67 0.65 38 0.70 0.29 0.67 0.65 38 0.70 0.29 0.67 0.65 38 0.70 0.29 0.67 0.70 38 0.70 0.29 0.71 0.55 0.70 38 0.70 0.29 0.29 0.71 0.55 0.70 38 0.70 0.29 0.29 0.59 0.55 0.70 38 0.70 0.29 0.29 0.59 0.59		good cover	1	1	0.45	0.59
grass cover on 75% or more 0.25 0.51 grass cover on 30% to 73% 0.25 0.51 ness 85% impervious 0.84 0.90 0.93 ness 85% impervious 0.84 0.90 0.93 average % impervious 0.67 0.81 0.86 average % impervious 0.67 0.81 0.65 average % impervious 0.67 0.81 0.65 average % impervious 0.67 0.81 0.65 average % impervious 0.67 0.65 0.70 38 0.74 0.65 0.70 38 0.79 0.99 0.99 38 0.74 0.65 0.65 25 0.79 0.99 0.99 exerts 0.79 0.79 0.79 0.99 average with curbs & storm 0.99 0.99 0.99 99	Open Spaces, Lawns, Parks,					
grass cover on JUN to 70% U-43 U.053 iness 85% impervious 0.84 0.90 0.93 iness 85% impervious 0.67 0.81 0.88 72% impervious 0.67 0.81 0.88 average % impervious 0.67 0.81 0.88 30 0.59 0.76 0.86 31 0.59 0.76 0.86 32 0.29 0.79 0.65 30 0.59 0.76 0.86 32 0.29 0.79 0.65 25 0.79 0.99 0.69 20 0.91 0.93 0.93 26 0.79 0.99 0.99 26 0.79 0.99 0.99 27 0.99 0.99 0.99 27 0.99 0.99 0.99 27 0.79 0.99 0.99 28 0.79 0.99 0.99 28 0.79 0		drass cover on 75% or more		20.05	0.51	0.65
iness B5% impervious 0.84 0.90 0.93 72% impervious 0.67 0.81 0.83 average % impervious 0.67 0.81 0.88 average % impervious 0.59 0.57 0.86 average % impervious 0.59 0.55 0.70 0.86 38 0.59 0.59 0.55 0.70 0.86 38 0.59 0.59 0.55 0.70 0.86 38 0.59 0.59 0.55 0.70 0.86 38 0.59 0.59 0.55 0.70 0.86 25 0.50 0.79 0.89 0.65 0.70 26 0.50 0.79 0.99 0.99 0.99 26 0.50 0.79 0.99 0.99 0.99 27 0.50 0.79 0.99 0.99 0.99 27 0.50 0.79 0.99 0.99 0.99 28 0.50		OPC 101 APRIL 00 TOWNS SET	1		101	1.44
iness 85% impervious 0.84 0.90 0.93 72% impervious 0.67 0.81 0.88 average % impervious 0.67 0.81 0.88 65 0.76 0.86 65 0.76 0.86 0.29 0.50 0.67 25 0.76 0.86 0.45 0.65 25 0.41 0.63 26 0.41 0.63 26 0.91 0.99 perking lots, roofs, driveways, 0.99 0.99 0.99 perkers 0.57 0.96 0.99 perkers 0.57 0.69 0.99 perkers 0.57 0.50 0.84 perkers 0.57 0.50 0.59 perkers 0.55 0.50 perkers 0.50 0.50 0.59 perkers 0.50 0.50 0.50 perkers 0.50 0.50 0.50 0.50 perkers 0.50 0.50 0.50 0.50 perkers 0.50 0.50 0.50 0.50 0.50 0.50 0.50 perkers 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5					5.5	
72% impervious 0.67 0.81 0.88 average % impervious 0.59 0.56 0.78 38 0.59 0.57 0.65 38 0.49 0.65 25 0.70 0.49 0.65 26 0.79 0.79 0.65 38 0.79 0.79 0.65 39 0.71 0.79 0.69 25 0.70 0.79 0.69 26 0.79 0.79 0.69 27 0.79 0.79 0.99 28 0.79 0.99 0.99 29 0.79 0.99 0.99 20 0.79 0.79 0.99 28 0.79 0.79 0.99 29 0.79 0.79 0.99 20 0.79 0.79 0.99 20 0.79 0.79 0.99 29 0.79 0.79 0.89	mercial and	85% impervious	0.84	06.0	0.93	96.0
average % impervious 0.59 0.76 0.86 38 0.55 0.70 0.55 0.70 38 0.55 0.70 0.55 0.70 30 0.55 0.75 0.65 0.75 25 0.41 0.65 0.67 0.65 26 0.41 0.67 0.69 0.69 27 0.99 0.99 0.99 0.99 28 0.09 0.99 0.99 0.99 29 0.99 0.99 0.99 0.99 20 0.49 0.99 0.99 0.99 20 0.99 0.99 0.99 0.99 20 0.49 0.69 0.84 0.99		72% impervious	0.67	0.81	0.88	0.92
65 38 38 30 30 30 30 30 30 30 30 30 30		average % impervious				
65 0.59 0.75 0.86 38 0.55 0.70 0.86 30 0.59 0.57 0.86 31 0.45 0.65 32 0.43 0.65 32 0.99 0.99 0.99 645 0.64 0.99 0.99 0.99 645 0.64 0.091 645 0.64 0.69 0.99 645 0.64 0.69 0.99						
38 0.29 0.55 0.57 0.70 25 0.49 0.65 0.70 25 0.41 0.65 0.65 26 0.41 0.65 0.65 27 28 0.41 0.65 28 26 0.64 0.65 29 20 0.99 0.99 0.99 ets and Roads paved with curbs & storm 0.99 0.99 0.99 gravel 0.44 0.79 0.79 0.99 0.99		65	0.59	0.76	0.86	06.0
30 0.49 0.67 25 0.45 0.65 20 0.45 0.65 21 0.45 0.65 26 0.45 0.65 27 0.45 0.65 28 parking lots, roofs, driveways, 0.99 0.99 ets paved with curbs & storm 0.99 0.99 ets 0.57 0.79 0.69 gravel 0.57 0.76 0.64		38	0.29	0.55	0.70	0.80
25 0.45 0.65 ed Areas 2 0.41 0.63 ed Areas parking lots, roofs, driveways, 0.99 0.99 0.99 ets and Roads paved with curbs & storm 0.99 0.99 0.99 9.99 severes 0.49 0.79 0.79 0.49 0.69 0.49	2016	30	1	0.49	0.67	0.78
20 0.41 0.63 parking lots, roofs, driveways, 0.99 0.99 0.99 exe. 0.95 0.99 0.99 0.99 paved 0.57 0.76 0.84 gravel 0.57 0.79 0.80		25	1	0.45	0.65	0.76
parking lots, roofs, driveways, 0.99 0.90	-	20	1	0.41	0.63	0.74
paved with curbs & storm 0.99 0.99 0.99 sewers 0.57 0.76 0.84 gravel 0.49 0.69 0.80		parking lots, roofs, driveways,	66.0	66.0	66'0	66.0
0.57 0.76 0.84 0.49 0.69 0.80		paved with curbs & storm	0.99	66.0	66.0	66.0
0.49 0.69 0.80		sewers	0.57	0.76	0.84	0.88
		gravel dirt	0.49	0.69	0.80	0.84

Copyright 2013, T&M Associates — All Rights Reserved. The copying or reuse or this document or portions thereof, for other than the original project or the purpose originally intended, without the written permission of T&M associates is prohibited. u:/Hltc/00010/pigna/Nudep Submission/Xref/Hltc00010_prop_areas.dwg

Appendix C

PREPARED FOR:

Holtec Technology Center, LLC One Holtec Drive Marlton, NJ 08053

PREPARED BY:

T&M Associates 1256 N. Church Street Moorestown, NJ 08057 856.722.6700

STORMWATER MANAGEMENT REPORT

HOLTEC TECHNOLOGY CENTER BLOCK 457-LOT 16, p/o BLOCK 455-LOT 1, BLOCKS 511, 512, 514 & 515 CITY OF CAMDEN, CAMDEN COUNTY, NEW JERSEY

T&M PROJECT NO. HLTC-00010 February 17, 2015 Revised May 1, 2015

Eis R ditthely

a (112)

Erik R. Littlehales, P.E. NJ License No. 24GE04312700

David J. Fleming, P.E., NJ License No. 24GE3321600

David J

Holtec Technology Center Drainage Report Manufactured Treatment Device Flow Summary

HLTC-00010 Revised 5/1/2015

Inlet #	Impervious (SF)	Impervious (Ac)	impervious "C"	Pervious (SF)	Pervious (Ac)	Pervious "C"	Total Area (Ac)	Composite "C"	I (infhr)	Q=CIA
101A	9,770	0.22	0.99	6,110	0.14	0.65	0,30	0.68	3.200	0.99
101B	6,579	0,13	0.99	3,089	0.07	0.65	0.20	0.87	3.200	0.56
101C	14,321	0.33	0.99	10,366	0.24	0.65	0.57	0.85	3.200	1.55
101D	10,565	0.24	0.09	1,080	0.02	0.65	0.26	0.08	3.200	0.80
		0.92					1.09	0.69		3.90

WOU-103 Vortechs 16000

Inlet #	Impervious (SF)	Impervious (Ac)	Impervious "C"	Pervious (SF)	Pervious (Ac)	Pervious "C"	Total Area (Ac)	Composite "C"	I (in/hr)	Q=CIA
103A	5.662	0.13	0.99	2,036	0.05	0.85	0.18	0.9	3.200	0.52
103B	3,468	0.06	0.99	8,342	0.19	0.65	0.27	0.75	3.200	0.65
103C	3,935	0.09	0.99	9,230	0.21	0.85	0,30	0.75	3.200	0.72
103D	6,935	0,14	0.99	2,170	0.05	0.65	0.19	0,9	3.200	0.55
1103E	0	0.00	0,99	8,895	0.20	0.65	0.20	0.65	3.200	0.42
103F	1,668	0.04	0.99	3,360	0.08	0.65	0.12	0.76	3.200	0.29
1030	2,532	0.08	0.99	1,097	0.03	0.65	0,09	0.88	3.200	0.25
103H	0	0.00	0.99	3,668	0,08	0.65	0,08	0.65	3.200	0.17
1031	2.743	0.00	0.90	0	0,00	0.65	0,06	0.99	3.200	0.19
103J	6,026	0,14	0.99	0	0.00	0.65	0.14	0.99	3.200	0.44
103K	35,793	0.82	0.99	17,704	0.41	0.65	1.23	0.88	3.200	3.40
		1.56			-		2,80:	0.83		7.68

5, 13x7 Filterra Units - NE Parking Area

Inlet #	Impervious (SF)	Impervioue (Ac)	Impervious "G"	Pervious (SF)	Pervious (Ac)	Pervious "C"	Total Area (Ac)	Composite "C"	l (in/hr)	Q=CIA
107A	10.523	0.24	0.99	652	0.01	0.65	0.25	0.98	3.200	0.76
1078	20,470	0.47	0.99	1,310	0.03	0.65	0.50	0.97	3.200	1.55
108A, x2	41,770	0.96	0.99	1,700	0.04	0.65	1.00	0.98	3.200	3,14
109A	20,048	0.46	0.99	1,732	0.04	0.65	0.50	0.96	3.200	1,64
		2.13	_				2.25	0.07		27/01 3

WQU-110 A & B Vortechs 11000, x2

Inlet #	Impervious (SF)	Impervious (Ac)	Impervious "G"	Pervious (SF)	Pervious (Ac)	Pervious "C"	Total Area (Ac)	Composite "C"	l (in/hr)	Q=CIA
111A	7,693	0.18	0.99	11,957	0.27	0.65	0,45	0.79	3.200	1,14
111B	14,113	0.32	0.99	0	0.00	0.65	0.32	0.99	3.200	1.01
112	43,531	0.99	0.99	10,779	0.25	0,65	1.24	0,92	3.200	3,65
113	33,800	0.78	0.99	8,395	0.19	0.65	0,07	0.92	3.200	2.88
114	9,683	0.22	0.99	5,229	0,12	0.65	0,34	0.87	3.200	0.95
115	15.753	0.38	0.99	4,560	0.10	0.65	0,46	0.92	3.200	1,35
116	7.497	0.17	0.99	3,635	0.08	0.65	0.25	0.88	3.200	0.70
117.	4,384	0.10	0.99	3,635	0.08	0.65	0.18	0.84	3.200	0.48
118	22,462	0.52	0.99	4,171	0.10	0.65	0.62	0,94	3,200	3.86
-		3.64					4.69	0.90		13.86

.

EXISTING GI MTD

EXISTING MTD

WQU-121	Vortechs 160	00, x2	
Inlet #	impervious (SE)	impervious (Ac)	Imperviou

Inlet #	(SF)	Impervious (Ac)	Impervious "C"	Pervious (SF)	Pervious (Ac)	Pervious "C"	Total Area (Ac)	Composite "C"	l (in/hr)	Q=CIA
122	7.800	0.18	0.99	992	0,02	0.65	0.20	0,95	3.200	0.61
122A	18,690	0.43	0.99	0	0.00	0.65	0,43	0.99	3,200	1,36
122B	18:559	0.43	0.99	0	0,00	0.65	0.43	0,99	3.200	1.36
1220	8.961	0.21	0.99	0	0.00	0.65	0.21	0.99	3,200	0.67
122E	4.633	0.10	0.99	3,531	0.08	0.65	0.18	0.84	3.200	0.48
123	3,000	0.07	0.99	0	0.00	0.65	0.07	0.99	3.200	0.22
124	12,468	0.29	0.99	4,426	0.10	0.65	0.39	0.9	3.200	1.12
124A	3,268	0.08	0.99	0	0.00	0.65	0,08	0.99	3,200	0.25
124B	3,234	0.07	0.99	2,717	0,06	0.65	0.13	0.63	3.200	0.35
125	12,033	0.30	0.99	9,319	0.21	0,65	0.51	0.85	3.200	1.39
125A	11.147	0.26	0.99	5,593	0,13	0.65	0.39	0.88	3.200	1.10
126	11,400	0.26	0.99	0	0.00	0,65	0.26	0.99	3.200	0.82
127	12,499	0.29	0.99	7,414	0.17	0.65	0.46	0.80	3,200	1.27
128	14,995	0.34	0.99	1,710	0.04	0.65	0.38	0.95	3.200	1.16
129	33,955	0.78	0.99	1,732	0,04	0.65	0.82	0,97	3,200	2.55
130	25,915	0.62	0.99	1,700	0.04	0,65	0.66	0.97	3.200	2.05
		4.71					5,60	0.93		10,76

Inlet #	Impervious (SF)	Impervious (Ac)	Impervious "C"	Pervious (SF)	Pervious (Ac)	Pervious "C"	Total Area (Ac)	Composite "C"	I (In/hr)	Q=GIA
201B	17,931	0.41	0.99	0	0,00	0.65	0.41	0.99	3.200	1.30
201C	17,208	0.40	0.99	0	0.00	0,65	0,40	0.99	3.200	1.27
201D	33,010	0.76	0.99	0	0,00	0.65	0.76	0.99	3.200	2.41
		1.57			n		1,57	0.99		4.97

WQU-209 Vortechs 16000

inlet #	Impervious (SF)	Impervious (Ac)	Impervious "C"	Pervious (SF)	Pervious (Ac)	Pervious C	Total Area (Ac)	Composite "C"	l (in/hr)	Q=CIA
209A	44,945	1.03	0.99	0	0.00	0.65	1.03	0.99	3:200	3.28
209B	31,800	0,73	0.99	0	0.00	0.65	0,73	0.99	3.200	2.31
209C	7,500	0.17	0.99	0	0.00	0.65	0.17	0.99	3:200	0.54
209D	6.650	0.16	0.99	0	0.00	0.65	0.16	0,99	3.200	0.61
209E	14,632	0.34	0.99	0	0.00	0.65	0.34	0.99	3.200	1,08
		2.43					2.49	0.99		7.70

Inlet #	impervious (SF)	Impervious (Ac)	Impervious C	Pervious (SF)	Pervious (Ac)	Pervious "C"	Total Area (Ac)	Composite "C"	l (in/hr)	Q=CIA
301	30,769	0.84	0.99	6,262	0.12	0.65	0.96	0.95	3.200	2.92
301A	18,571	0.43	0.99	2,713	0.08	0.65	0.49	0.95	3,200	1.49
301B	19,632	0.45	0.99	2,320	0.05	0.65	0,50	0.98	3.200	1.64
303, x2	30,241	0.69	0.99	6,795	0.16	0.65	0.85	0.93	3,200	2.63
303A	20,178	0.46	0.99	1,602	0.04	0.65	0.50	0.98	3.200	1.64
303B	19,766	0.45	0,99	2,332	0.05	0.65	0.50	0.96	3.200	1.64
304	14,315	0.33	0.99	1,353	0.03	0.65	0.36	0.98	3.200	-1911 ·
305	13,380	0.31	0.99	1,780	0.04	0.65	0.35	0.05	3.200	1.00
		3.96					4.61	0.95		13.72

Sizing Summary

Holtec Technology Center, LLC

Camden, NJ

Information provided by Engineer (T&M Associates):

- Total contributing area = 4.91 acres
- WQ Flowrate = 13.86 cfs
- Contributing Inlets = 111A through 118
- Presiding agency = NJDEP

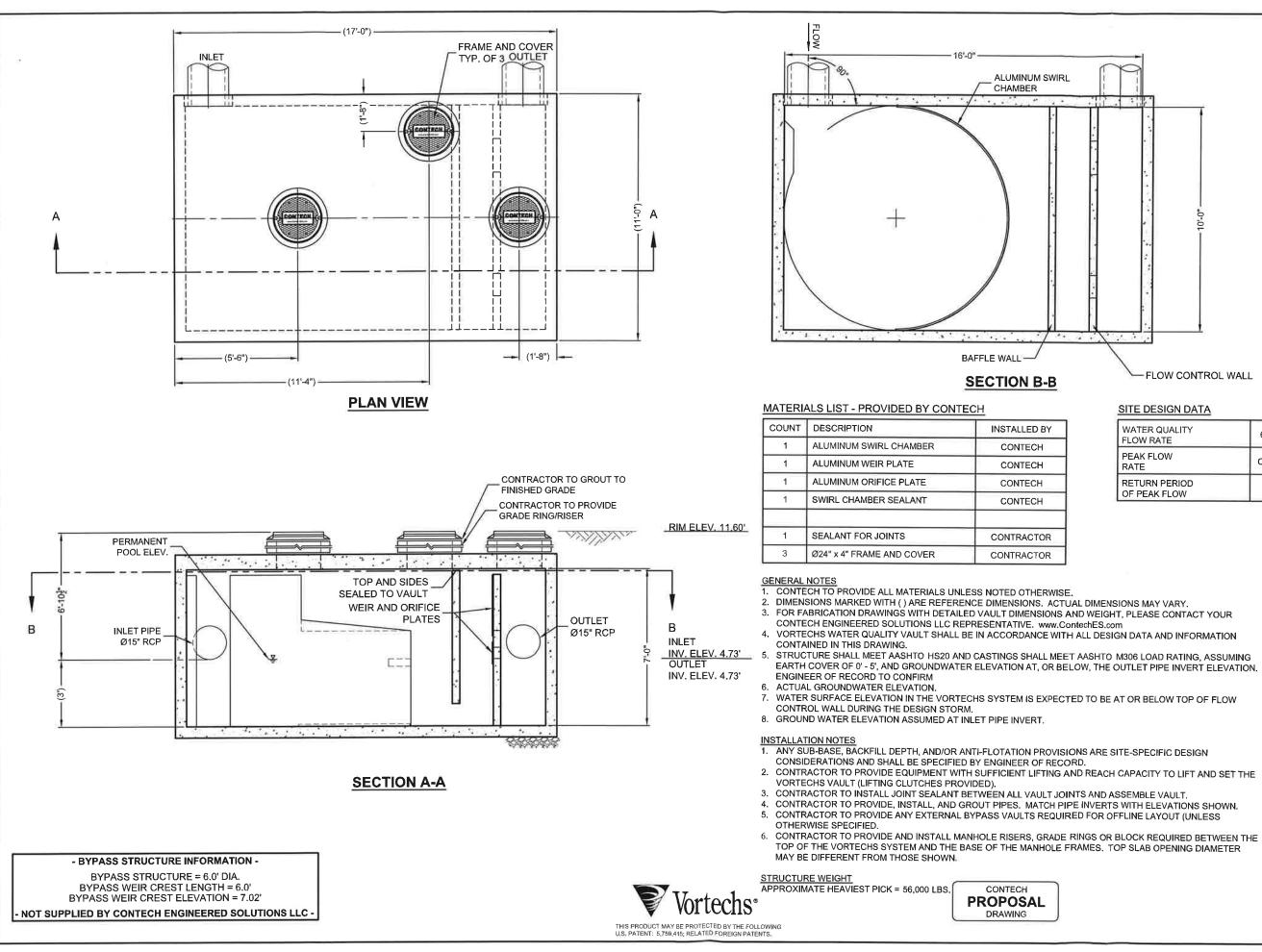
Sizing Summary:

The CONTECH Engineered Solutions Vortechs® stormwater treatment system is a hydrodynamic separator designed to enhance gravitational separation of floating and settleable materials from stormwater flows. Stormwater flows enter the unit tangentially to the grit chamber, which promotes a gentle swirling motion. As stormwater circles within the grit chamber, pollutants migrate toward the center of the unit where velocities are the lowest. The majority of settleable solids are left behind as stormwater exits the swirl chamber. Stormwater flows then are directed below a floatables baffle wall, where buoyant debris and hydrocarbons are removed. The Vortechs system is NJCAT verified and as a result has received an interim certification from the NJDEP for 50% TSS removal.

For this project the Vortechs system was designed to treat the 2004 NJDEP water quality design storm – a two-hour, variable distribution storm, with a rainfall depth of 1.25" inches. The engineer of record modeled the water quality design storm runoff, and the peak water quality flow rate was determined to be 13.86 cfs.

Water Quality Design Storm Peak	Two Vortechs Model VX 11000 In Parallel
Runoff Rate (cfs)	Water Quality Treatment Flow Rate (cfs)
13.86	14.00

Maintenance:

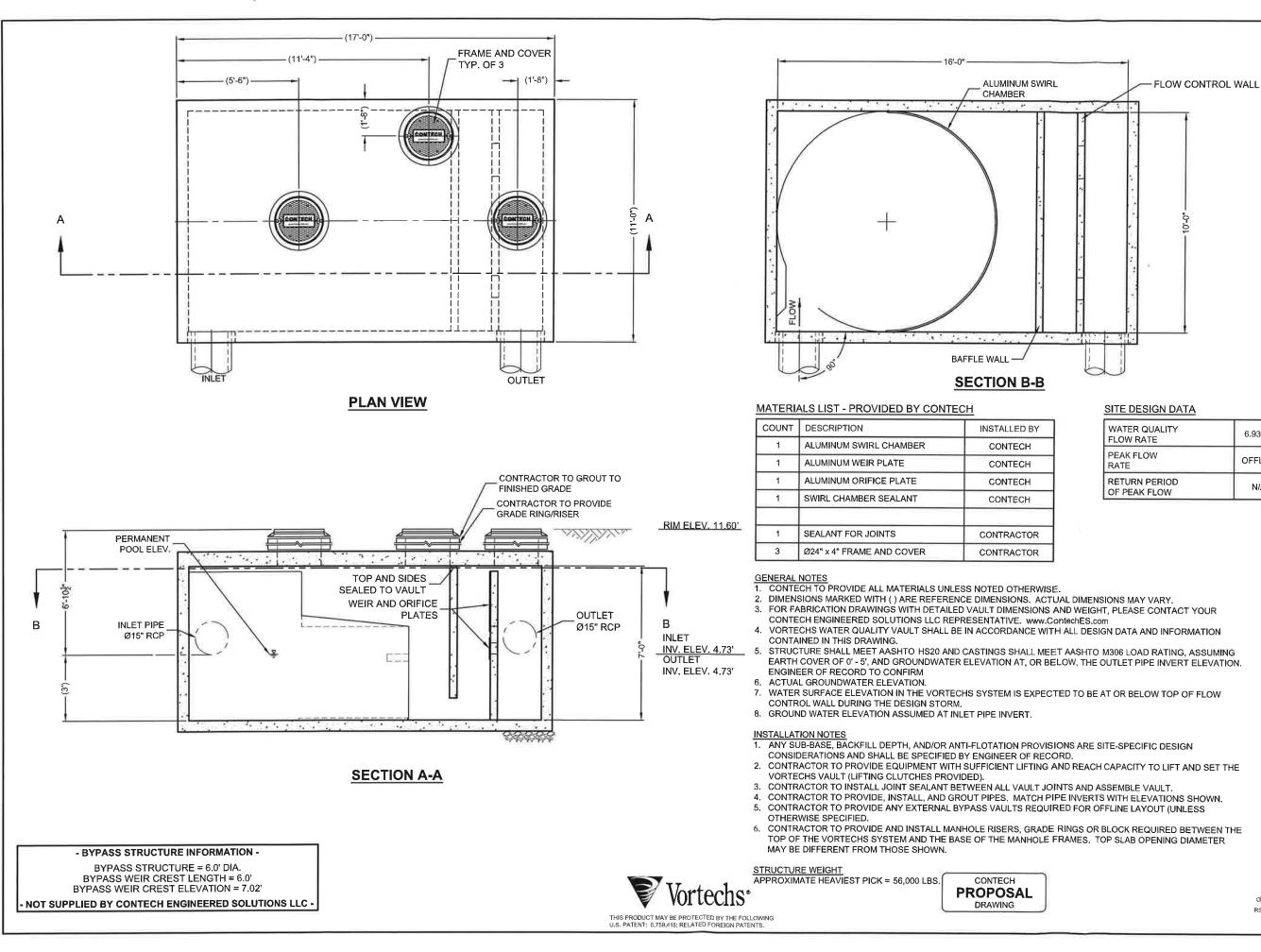

Like any stormwater best management practice, the Vortechs system requires regular inspection and maintenance to ensure optimal performance. Maintenance frequency will be driven by site conditions. Quarterly visual inspections are recommended, at which time the accumulation of pollutants can be determined. On average, the Vortechs system requires annual removal of accumulated pollutants.

Thank you for the opportunity to present this information to you and your client.

Sincerely,

Andrew Brown, E.I.T. Stormwater Design Engineer

http://conteches.com/

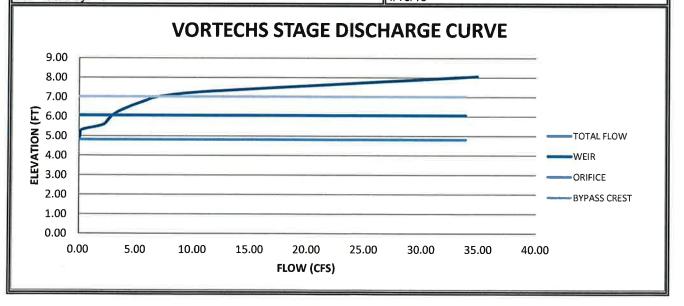


WATER QUALITY FLOW RATE	6.93 cfs
PEAK FLOW RATE	OFFLINE
RETURN PERIOD OF PEAK FLOW	N/A

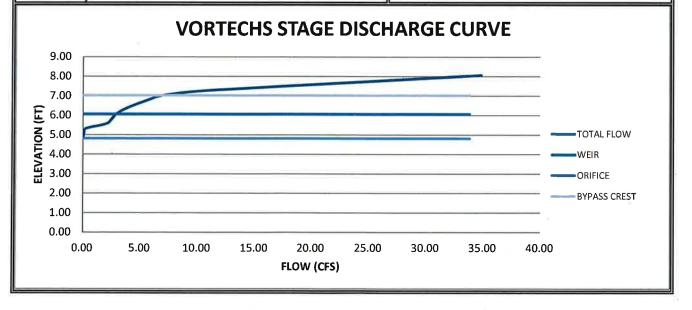
GIL

LS/LS

Vortechs 11000 - 517619-240 Image: Construct of the second of the se	The design and information shown on this drawing is provided as a servicer to the project owner, enginear and contractor by Oncine Trighter and Santa LLC ("Constorh"). Neiline this drawing, nor any part lihered, may be used, reproduced or modified in any memory	wrouu the prior written consent of Contech. Fallure to compty is done at the user's own risk and Contech expressly disclaims any liability or responsibility for	Such use	In usuerspances between the supplied information upon which the drawing is based and actual field conditions are encountered as effe work processes	TAB these discrepancies must be reported to Contect immediately for re-evaluation of the design. Contech	accepts no llability for designs based on missing, Incomplete or inaccurate information supplied by others.
techs 11000 - 517619-240 ec Technology Center, LLC Camden, NJ DESIGNATION: WQU-110A						REVISION DESCRIPTION BY
techs 11000 - 517619-240 ec Technology Center, LLC Camden, NJ DESIGNATION: WQU-110A					2/29/15	DATE
techs ec Tec DESI			T		-	MARK
9	000 - 5176	hnology Cen	I N undone		BNATION: W	
····	hs	www.contechES.com Moltec Tec Holtec Tec			DESIG	THIS PRODUCT MAY BE PROTECTED BY THE FOLLOWING U.S. PATENT: 5./59,415, RELATED FOREIGN PATENTS.
4/16/15 DESIGNED: DRAWN:	ENGINEERED SOLUTIONS LLC Vortechs	www.contechES.com 2025 Centre Polnia Dr., Suite 400, West Chenerr, DH 45/R50 Holtec	B00-338-1122 513-645-7000 513-645-7993 FAX	Voutacha:	VOLLECIIS SITE DESIG	THIS PRODUCT MAY BE PROTECTED BY THE FOLLOWING U.S. PATENT: 5./38,415; RELATED FOREIGN PATENTS.
	Contechs Contechs Contechs Contechs	www.contechES.com 2025 Centre Polnia Dr., Suite 400, West Chenerr, DH 45/R50 Holtec	2012 2012 2012 200-338-1122 513-645-7000 513-645-7993 FAX	The track of the t	A VOLUCCIIS SITE DESIG	THIS PRODUCT MAY BE PROTECTED BY THE FOLLOWING U.S., PATENT: 5,759,415; RELATED FOREIGN PATENTS.
DESIGNED: DRAWN: ##### TAB	Vortechs Vortechs Vortechs	Www.ContechES.com 2025 Centre Polnia Dr. Subig 00, West Chester OH 45069 HOIteC	AP A A A A A A A A A A A A A A A A A A	The track of the t	A VOLUCCIIS SITE DESIG	THIS PRODUCT MAY BE PROTECTED BY THE FOLLOWING U.S. PATENT: 5,759,415; RELATED FOREIGN PATENTS.


WATER QUALITY FLOW RATE	6.93 cfs
PEAK FLOW RATE	OFFLINE
RETURN PERIOD OF PEAK FLOW	N/A

GL


RS/RS

The design and Information shown on this drawing is provided as a service to the project owner, engineer	and contractor by Contech Engineered Solutions LLC ("Contech"), Nelther this drawing, nor any part thereof, may be used, reproduced or modified in any manner	without the prior written consent of Contach, Fallure to comply is done at the user's own risk and Contach	expressly disclaims any liability or responsibility for	If discrepancies between the supplied information upon which the drawing is based and actual field	contributes are encountered at size work progresses. These discrepandes: must be recorded to Contech Immediately for re-extantion at the dispir. Contech	accepts no fability for designs based on mitchig hocorrylate or insocurate information supplied by others.
					4/29/15 UPDATE SITE DESIGNATION AND ELEV. TAB	REVISION DESCRIPTION BY
					4/29/15	DATE
					-	MARK
	319-250				/QU-110B	
	Vortechs 11000 - 517619-250	Holton Tochnology Contor 110		Camden, NJ	SITE DESIGNATION: WQU-110B	
- TLUT.	Engineepen solitions itc Vortechs	www.ContechES.com Holtor Tochaology Contoches 11 C			VOLLECDS* SITE DESIGNATION: WQU-110B	THIS PRODUCT MAY BE PROTECTED BY THE FOLLOWING U.S. PATENT: 5, 786/ATED FOREIGN PATENTS.
	ENGINEERED SOLITIONS ILC VOITECHS	WWW.ContechES.com	9025 Centre Polnte Dr., Suito 400, West Chester, DH 45069 1101160 160		* Vortechs*	THIS PRODUCT MAY BE PROTECTED BY THE FOLLOWING U.S. PATENT: 5/38,415; RELATED FOREIGN PATENTS.
DESIC	ENGINEERED SOLITIONS ILC Vortechs	WWW.ContechES.com	9 9025 Centre Polnte Dr., Sulta 400, West Chester, DH 45069 1101160 160		VOLTECHS*	THIS PRODUCT MAY BE PROFECTED BY THE FOLLOWING U.S. PATENT: 5/78/415; RELATED FOREIGN PATENTS.
DESIC			2025 Centra Polite Dr., Sulia 400, West Chester, DH 45089		VOLTECHS*	THIS PRODUCT MAY BE PROTECTED BY THE FOLLOWING U.S. PATENT: 5,758/15, RELATED FOREIGN PATENTS.

VORTECHS SYSTEM® FLOW CALCULATIONS HOLTEC TECHNOLOGY CENTER CAMDEN, NJ MODEL NAME VORTECHS 11000 SITE DESIGNATION WQU-110A								
Vortech	s Orifice	Vortechs W	eir	Bypass Weir				
C	d = 0.56	Cd	= 3.37	Cd =	= 3.3			
A (ft ²	²) = 0.65	Weir Crest Length (ft)	= 0.92	Crest Length (ft) =	- 6			
Crest Elevation (ft		Crest Elevation (ft)		Crest Elev. (ft) =				
	,							
Head	Elevation	Orifice Flow	Weir Flow	Bypass Flow	Total Flow			
(ft)	(ft)	(cfs)	(cfs)	(cfs)	(cfs)			
0.00	4.81	0.00	0.00	0.00	0.00			
0.25	5.06	0.08	0.00	0.00	0.08			
0.50	5.31	0.23	0.00	0.00	0.23			
0.75	5.56	2.05	0.00	0.00	2.05			
1.00	5.81	2.51	0.00	0.00	2.51			
1.25	6.06	2.90	0.00	0.00	2.90			
1.50	6.31	3.24	0.39	0.00	3.63			
1.75	6.56	3.55	1.10	0.00	4.65			
2.00	6.81	3.84	2.01	0.00	5.85			
2.21	7.02	4.06	2.90	0.00	6.96			
2.46	7.27	4.31	4.11	2.48	10.89			
3.25	8.06	5.02	8.76	21.06	34.85			
2.20	7.01	4.05	2.88	0.00	6.93			
2.71	8.07	4.78	8.80	21.27	34.85			
alculated by: TAB			4/16/15					

		HS SYSTEM® FLO OLTEC TECHNOLO CAMDEN, I DDEL NAME VORT TE DESIGNATION	GY CENTER NJ ECHS 11000	IONS	
Vortech	s Orifice	Vortechs V	leir	Bypass Weir	
C	d = 0.56	Cd	= 3.37	Cd =	= 3.3
	²) = 0.65	Weir Crest Length (ft)	= 0.92	Crest Length (ft) =	= 6
Crest Elevation (fl	,	Crest Elevation (ft)		Crest Elev. (ft) =	
,					
Head	Elevation	Orifice Flow	Weir Flow	Bypass Flow	Total Flow
(ft)	(ft)	(cfs)	(cfs)	(cfs)	(cfs)
0.00	4.81	0.00	0.00	0.00	0.00
0.25	5.06	0.08	0.00	0.00	0.08
0.50	5.31	0.23	0.00	0.00	0.23
0.75	5.56	2.05	0.00	0.00	2.05
1.00	5.81	2.51	0.00	0.00	2.51
1.25	6.06	2.90	0.00	0.00	2.90
1.50	6.31	3.24	0.39	0.00	3.63
1.75	6.56	3.55	1.10	0.00	4.65
2.00	6.81	3.84	2.01	0.00	5.85
2.21	7.02	4.06	2.90	0.00	6.96
2.46	7.27	4.31	4.11	2.48	10.89
3.25	8.06	5.02	8.76	21.06	34.85
2.20	7.01	4.05	2.88	0.00	6.93
2.71	8.07	4.78	8.80	21.27	34.85
alculated by: TAB			4/16/15		

EXISTING WQ UNITS 110 Sizing Summary

Holtec Technology Center, LLC

Camden, NJ

Information provided by Engineer (T&M Associates):

- Total contributing area = 4.91 acres
- WQ Flowrate = 13.86 cfs
- Contributing Inlets = 111A through 118
- Presiding agency = NJDEP

Sizing Summary:

The CONTECH Engineered Solutions Vortechs® stormwater treatment system is a hydrodynamic separator designed to enhance gravitational separation of floating and settleable materials from stormwater flows. Stormwater flows enter the unit tangentially to the grit chamber, which promotes a gentle swirling motion. As stormwater circles within the grit chamber, pollutants migrate toward the center of the unit where velocities are the lowest. The majority of settleable solids are left behind as stormwater exits the swirl chamber. Stormwater flows then are directed below a floatables baffle wall, where buoyant debris and hydrocarbons are removed. The Vortechs system is NJCAT verified and as a result has received an interim certification from the NJDEP for 50% TSS removal.

For this project the Vortechs system was designed to treat the 2004 NJDEP water quality design storm – a two-hour, variable distribution storm, with a rainfall depth of 1.25" inches. The engineer of record modeled the water quality design storm runoff, and the peak water quality flow rate was determined to be 13.86 cfs.

Water Quality Design Storm Peak	Two Vortechs Model VX 11000 In Parallel
Runoff Rate (cfs)	Water Quality Treatment Flow Rate (cfs)
13.86	14.00

Maintenance:

Like any stormwater best management practice, the Vortechs system requires regular inspection and maintenance to ensure optimal performance. Maintenance frequency will be driven by site conditions. Quarterly visual inspections are recommended, at which time the accumulation of pollutants can be determined. On average, the Vortechs system requires annual removal of accumulated pollutants.

Thank you for the opportunity to present this information to you and your client.

Sincerely,

Andrew Brown, E.I.T. Stormwater Design Engineer

http://conteches.com/

Table 1: Filterra[®] Quick Sizing Table (New Jersey)

Available Filterra® Box Sizes (feet)	Recommended <u>Commercial</u> Contributing Drainage Area (acres) where C = 0.85	Outlet Pipe
4x4	up to 0.10	4" SDR-35 PVC
4x6 or 6x4	0.10 to 0.15	4" SDR-35 PVC
4x8 or 8x4	0.16 to 0.21	4" SDR-35 PVC
6x6	0.22 to 0.23	4" SDR-35 PVC
6x8 or 8x6	0.24 to 0.31	4" SDR-35 PVC
6x10 or 10x6	0.32 to 0.39	6" SDR-35 PVC
6x12 or 12x6	0.40 to 0.46	6" SDR-35 PVC
7x13 or 13x7	0.47 to 0.59	6" SDR-35 PVC

Notes:

1. All boxes are a standard 3.5 feet depth (INV to TC)

2. A standard SDR-35 PVC pipe coupling is cast into the wall for easy connection to discharge drain.

- 3. Dimensions shown are internal. Please add 1' to each external dimensions (using 6" walls).
- For Commerical Developments a minimum (runoff coefficient) C factor of 0.85 is required. For Residential Developments, use of C factors less than 0.5 require individual site review by Filterra.
- 5. Please ask for sizing tables for other target treatment goals.
- 6. This sizing table is valid for NJ following NJDEP Water Quality Design Storm Event of 1.25" in 2 hours using the Modified Rational Method to match peak flow with FT capacity as allowed by NJDEP.
- 7. Filterra infiltration rate 140"/hour.
- 8. Standard Filterra design (0.5' headspace, 2.5' filter depth)
- 9. NCRS TR-55 to capture routed volume in FT headspace as allowed by NJDEP.9

State of New Jersey

DEPARTMENT OF ENVIRONMENTAL PROTECTION Bureau of Nonpoint Pollution Control Division of Water Quality Mail Code 401-02B Post Office Box 420 Trenton, New Jersey 08625-0420 609-633-7021 Fax: 609-777-0432 http://www.state.nj.us/dep/dwq/bnpc home.htm

BOB MARTIN Commissioner

May 19, 2015

Derek M. Berg CONTECH Engineered Solutions, LLC 71 US Route 1, Suite F Scarborough, ME 04074

Re: MTD Lab Certification for the Filterra Bioretention System By CONTECH Engineered Solutions, LLC

TSS Removal Rate: 80%

Dear Mr. Berg:

CHRIS CHRISTIE

Governor

KIM GUADAGNO

Lt. Governor

This certification letter is being written to update the Filterra Bioretention System lab certification to reflect an ownership change from Filterra Bioretention System, A Division of Americast, Inc. to Contech Engineered Solutions, LLC.

The Stormwater Management rules under N.J.A.C. 7:8-5.5(b) and 5.7(c) allow the use of manufactured treatment devices (MTDs) for compliance with the design and performance standards at N.J.A.C. 7:8-5 if the pollutant removal rates have been verified by the New Jersey Corporation for Advanced Technology (NJCAT) and have been certified by the New Jersey Department of Environmental Protection (NJDEP). Filterra® Bioretention Systems has requested a Laboratory Certification for the Filterra Bioretention System.

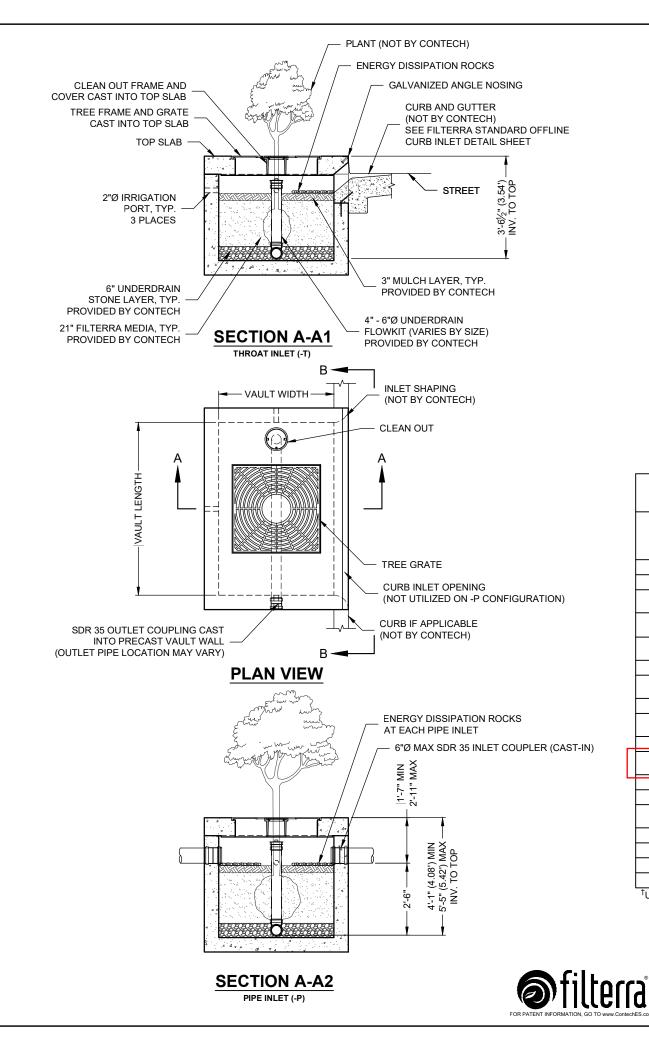
This project falls under the "Procedure for Obtaining Verification of a Stormwater Manufactured Treatment Device from New Jersey Corporation for Advanced Technology" dated January 25, 2013. The applicable protocol is the "New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device" dated January 25, 2013.

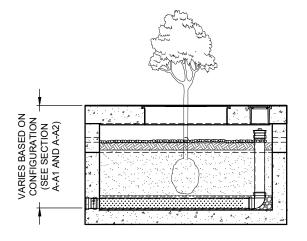
NJCAT verification documents submitted to the NJDEP indicate that the requirements of the aforementioned protocol have been met or exceeded. The NJCAT letter also included a recommended certification TSS removal rate and the required maintenance plan. The NJCAT Verification Report with the Verification Appendix for this device is published online at <u>http://www.njcat.org/verificationprocess/technology-verification-database.html</u>.

The NJDEP certifies the use of the Filterra Bioretention System by Contech Engineered Solutions, LLC at a TSS removal rate of 80%, when designed, operated and maintained in accordance with the information provided in the Verification Appendix.

Be advised a detailed maintenance plan is mandatory for any project with a Stormwater BMP subject to the Stormwater Management Rules, N.J.A.C. 7:8. The plan must include all of the items identified in Stormwater Management Rules, N.J.A.C. 7:8-5.8. Such items include, but are not limited to, the list of inspection and maintenance equipment and tools, specific corrective and preventative maintenance tasks, indication of problems in the system, and training of maintenance personnel. Additional information can be found in Chapter 8: Maintenance of the New Jersey Stormwater Best Management Manual.

If you have any questions regarding the above information, please contact Titus Magnanao, of my office at (609) 633-7021.

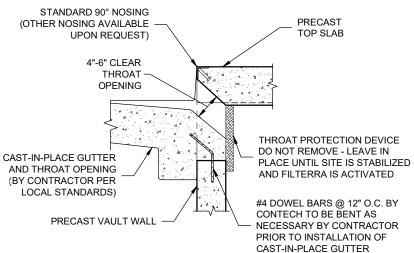

Sincerely,


lames/ J. Murphy. Chief

Bureau of Nonpoint Pollution Control

C: Chron File

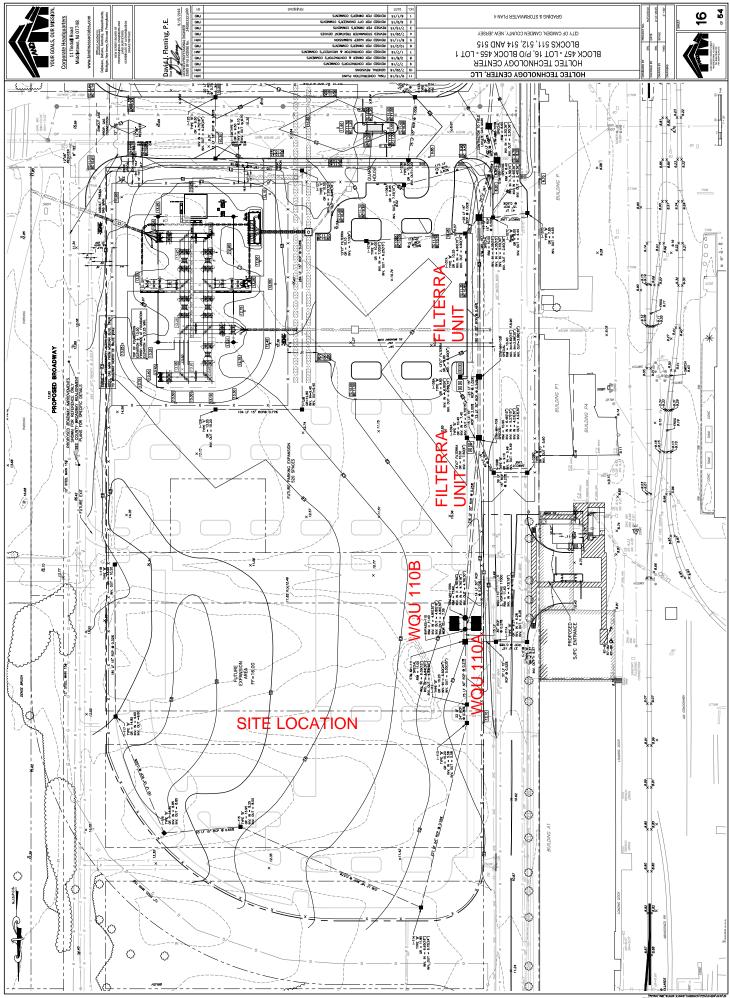
Richard Magee, NJCAT Madhu Guru, DLUR Elizabeth Dragon, BNPC Lisa Schaefer, BNPC Titus Magnanao, BNPC Ravi Patraju, NJDEP



SECTION B-B

FT CONFIGURATION (OPTIONS: THROAT INLET "-T", PIPE INLET "-P")									
VAULT SIZE (L x W)	MEDIA AREA (SF)	LONG SIDE INLET DESIG. / PART NO.	SHORT SIDE INLET DESIG. / PART NO.	AVAILABILITY	OUTLET PIPE DIA	MIN. NO. OF INLET PIPES (-P ONLY)			
4 x 4	16	FT0404	FT0404	ALL	4" SDR 35	1			
6 x 4	24	FT0604	FT0406	ALL	4" SDR 35	1			
8 x 4	32	FT0804	FT0408	ALL (EXCEPT DE,MD,NJ,PA,VA,WV)	4" SDR 35	1			
7.83 x 4.5	35	FT078045	FT045078	DE,MD,NJ,PA,VA.WV ONLY	4" SDR 35	1			
6 x 6	36	FT0606	FT0606	ALL (EXCEPT CA, TX)	4" SDR 35	1			
8 x 6	48	FT0806	FT0608	ALL	4" SDR 35	1			
10 x 6	60	FT1006	FT0610	ALL (EXCEPT CA, TX)	6" SDR 35	2			
8 x 8	64	FT0808	FT0808	CA, TX ONLY	6" SDR 35	2			
12 x 6	72	FT1206	FT0612	ALL (EXCEPT TX)	6" SDR 35	2			
10 x 8	80	FT1008	FT0810	CA, TX ONLY	6" SDR 35	2			
13 x 7	91	FT1307	FT0713	ALL (EXCEPT CA, TX)	6" SDR 35	2			
12 x 8	96	FT1208	FT0812	CA, TX ONLY	6" SDR 35	2			
14 x 8	112	FT1408 [†]	N/A	ALL	6" SDR 35	3			
16 x 8	128	FT1608 [†]	N/A	ALL (EXCEPT OR,WA)	6" SDR 35	3			
15 x 9	135	FT1509 [†]	N/A	OR,WA ONLY	6" SDR 35	3			
18 x 8	144	FT1808 [†]	N/A	CALL CONTECH	6" SDR 35	3			
20 x 8	160	FT2008 [†]	N/A	CALL CONTECH	6" SDR 35	4			
22 x 8	176	FT2208 [†]	N/A	CALL CONTECH	6" SDR 35	4			

[†]UTILIZES (2) CURB OPENINGS WITH MIN 6" SPACING


STANDARD CURB INLET DETAIL

INTERNAL PIPE CONFIGURATION MAY VARY DEPENDING ON VAULT SIZE

own on this drawing is provided as a service to the project owner, engineer and contractor by Contech Engineered Solutions LLC or one of its affiliated companies ("Contech"). Neither this drawing, nor any part thereof, may be used, reproduced or modified in any manne t of Contech. Failure to comply is done at the user's own risk and Contech expressly disclaims any liability or responsibility for such use. If discrepancies between the supplied information upon which the drawing is based and actual field conditions are encountered as sit

FILTERRA OFFLINE (FT) **CONFIGURATION DETAIL**

PROPOSED WQ UNITS

NOAA Atlas 14, Volume 2, Version 3 Location name: Camden, New Jersey, USA* Latitude: 39.9146°, Longitude: -75.1189° Elevation: m/ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

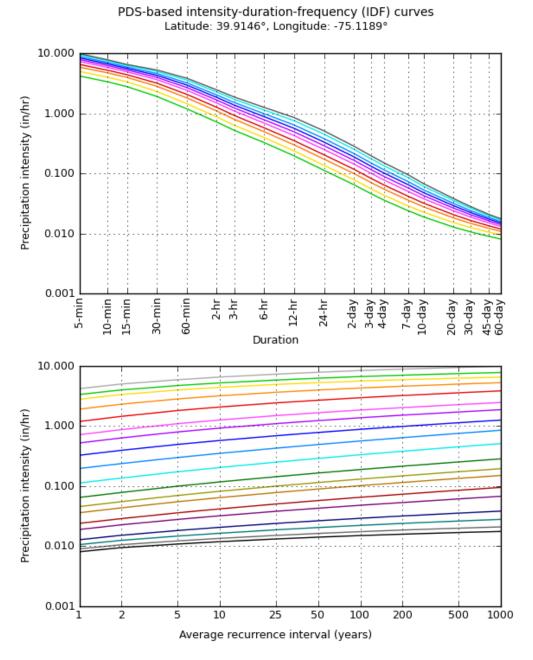
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

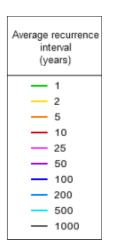
NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹										
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.18 (3.83-4.55)	4.98 (4.56-5.42)	5.87 (5.36-6.40)	6.50 (5.94-7.09)	7.27 (6.61-7.93)	7.81 (7.06-8.54)	8.34 (7.51-9.16)	8.82 (7.88-9.72)	9.40 (8.30-10.4)	9.83 (8.60-11.0)
10-min	3.34	3.98	4.70	5.20	5.80	6.22	6.63	6.99	7.43	7.74
	(3.06-3.64)	(3.65-4.34)	(4.30-5.12)	(4.75-5.67)	(5.27-6.32)	(5.62-6.80)	(5.96-7.27)	(6.25-7.70)	(6.56-8.24)	(6.78-8.63)
15-min	2.78	3.34	3.96	4.38	4.90	5.25	5.59	5.88	6.24	6.48
	(2.55-3.03)	(3.06-3.64)	(3.62-4.32)	(4.00-4.78)	(4.45-5.34)	(4.74-5.74)	(5.03-6.12)	(5.25-6.48)	(5.51-6.91)	(5.67-7.22)
30-min	1.90	2.30	2.81	3.17	3.63	3.95	4.28	4.58	4.96	5.25
	(1.75-2.08)	(2.11-2.51)	(2.57-3.07)	(2.90-3.47)	(3.30-3.96)	(3.57-4.32)	(3.85-4.69)	(4.09-5.04)	(4.38-5.50)	(4.59-5.85)
60-min	1.19	1.45	1.80	2.07	2.42	2.68	2.95	3.21	3.56	3.83
	(1.09-1.30)	(1.33-1.58)	(1.65-1.97)	(1.89-2.26)	(2.19-2.64)	(2.42-2.93)	(2.65-3.23)	(2.87-3.54)	(3.14-3.94)	(3.35-4.27)
2-hr	0.716	0.870	1.09	1.26	1.48	1.66	1.84	2.02	2.26	2.45
	(0.652-0.784)	(0.794-0.953)	(0.994-1.20)	(1.14-1.38)	(1.34-1.63)	(1.49-1.82)	(1.64-2.02)	(1.78-2.23)	(1.98-2.52)	(2.12-2.74)
3-hr	0.521	0.633	0.796	0.921	1.09	1.23	1.37	1.51	1.71	1.86
	(0.476-0.572)	(0.578-0.695)	(0.724-0.873)	(0.836-1.01)	(0.984-1.20)	(1.10-1.35)	(1.22-1.51)	(1.33-1.67)	(1.48-1.90)	(1.60-2.08)
6-hr	0.326	0.394	0.493	0.573	0.687	0.780	0.879	0.983	1.13	1.25
	(0.298-0.358)	(0.360-0.434)	(0.449-0.543)	(0.520-0.630)	(0.618-0.756)	(0.696-0.859)	(0.777-0.971)	(0.858-1.09)	(0.969-1.26)	(1.06-1.41)
12-hr	0.196	0.237	0.299	0.350	0.427	0.491	0.562	0.639	0.753	0.849
	(0.180-0.217)	(0.217-0.262)	(0.272-0.330)	(0.318-0.386)	(0.383-0.470)	(0.436-0.542)	(0.492-0.622)	(0.551-0.711)	(0.634-0.843)	(0.701-0.957)
24-hr	0.113	0.136	0.173	0.204	0.250	0.289	0.332	0.379	0.450	0.509
	(0.104-0.122)	(0.126-0.148)	(0.160-0.188)	(0.188-0.221)	(0.229-0.270)	(0.263-0.312)	(0.300-0.357)	(0.340-0.408)	(0.398-0.483)	(0.445-0.547)
2-day	0.065	0.078	0.100	0.117	0.143	0.165	0.189	0.214	0.252	0.284
	(0.059-0.070)	(0.072-0.085)	(0.092-0.108)	(0.108-0.127)	(0.130-0.155)	(0.150-0.179)	(0.170-0.204)	(0.192-0.232)	(0.223-0.273)	(0.248-0.307)
3-day	0.046	0.055	0.070	0.082	0.100	0.115	0.131	0.148	0.174	0.195
	(0.042-0.050)	(0.051-0.060)	(0.064-0.076)	(0.075-0.089)	(0.091-0.108)	(0.104-0.124)	(0.118-0.141)	(0.133-0.160)	(0.154-0.188)	(0.171-0.211)
4-day	0.036	0.043	0.055	0.064	0.078	0.089	0.102	0.115	0.134	0.150
	(0.033-0.039)	(0.040-0.047)	(0.051-0.060)	(0.059-0.070)	(0.071-0.084)	(0.081-0.097)	(0.092-0.110)	(0.103-0.124)	(0.120-0.145)	(0.133-0.163)
7-day	0.024	0.029	0.036	0.042	0.050	0.057	0.065	0.073	0.085	0.095
	(0.022-0.026)	(0.027-0.031)	(0.033-0.039)	(0.039-0.045)	(0.046-0.054)	(0.053-0.062)	(0.059-0.070)	(0.066-0.079)	(0.076-0.092)	(0.084-0.103)
10-day	0.019	0.023	0.028	0.032	0.038	0.043	0.048	0.053	0.061	0.068
	(0.018-0.020)	(0.021-0.024)	(0.026-0.030)	(0.030-0.034)	(0.035-0.041)	(0.040-0.046)	(0.044-0.051)	(0.049-0.057)	(0.055-0.066)	(0.061-0.073)
20-day	0.013	0.015	0.018	0.021	0.024	0.027	0.029	0.032	0.035	0.038
	(0.012-0.014)	(0.014-0.016)	(0.017-0.019)	(0.019-0.022)	(0.022-0.025)	(0.025-0.028)	(0.027-0.031)	(0.030-0.034)	(0.033-0.038)	(0.035-0.041)
30-day	0.011	0.013	0.015	0.016	0.019	0.020	0.022	0.024	0.026	0.028
	(0.010-0.011)	(0.012-0.013)	(0.014-0.016)	(0.016-0.017)	(0.018-0.020)	(0.019-0.022)	(0.021-0.023)	(0.022-0.025)	(0.024-0.028)	(0.026-0.030)
45-day	0.009	0.011	0.012	0.014	0.015	0.016	0.017	0.019	0.020	0.021
	(0.009-0.009)	(0.010-0.011)	(0.012-0.013)	(0.013-0.014)	(0.014-0.016)	(0.015-0.017)	(0.016-0.018)	(0.017-0.020)	(0.019-0.021)	(0.020-0.022)
60-day	0.008	0.009	0.011	0.012	0.013	0.014	0.015	0.016	0.017	0.018
	(0.008-0.009)	(0.009-0.010)	(0.010-0.011)	(0.011-0.013)	(0.013-0.014)	(0.013-0.015)	(0.014-0.016)	(0.015-0.017)	(0.016-0.018)	(0.017-0.019)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

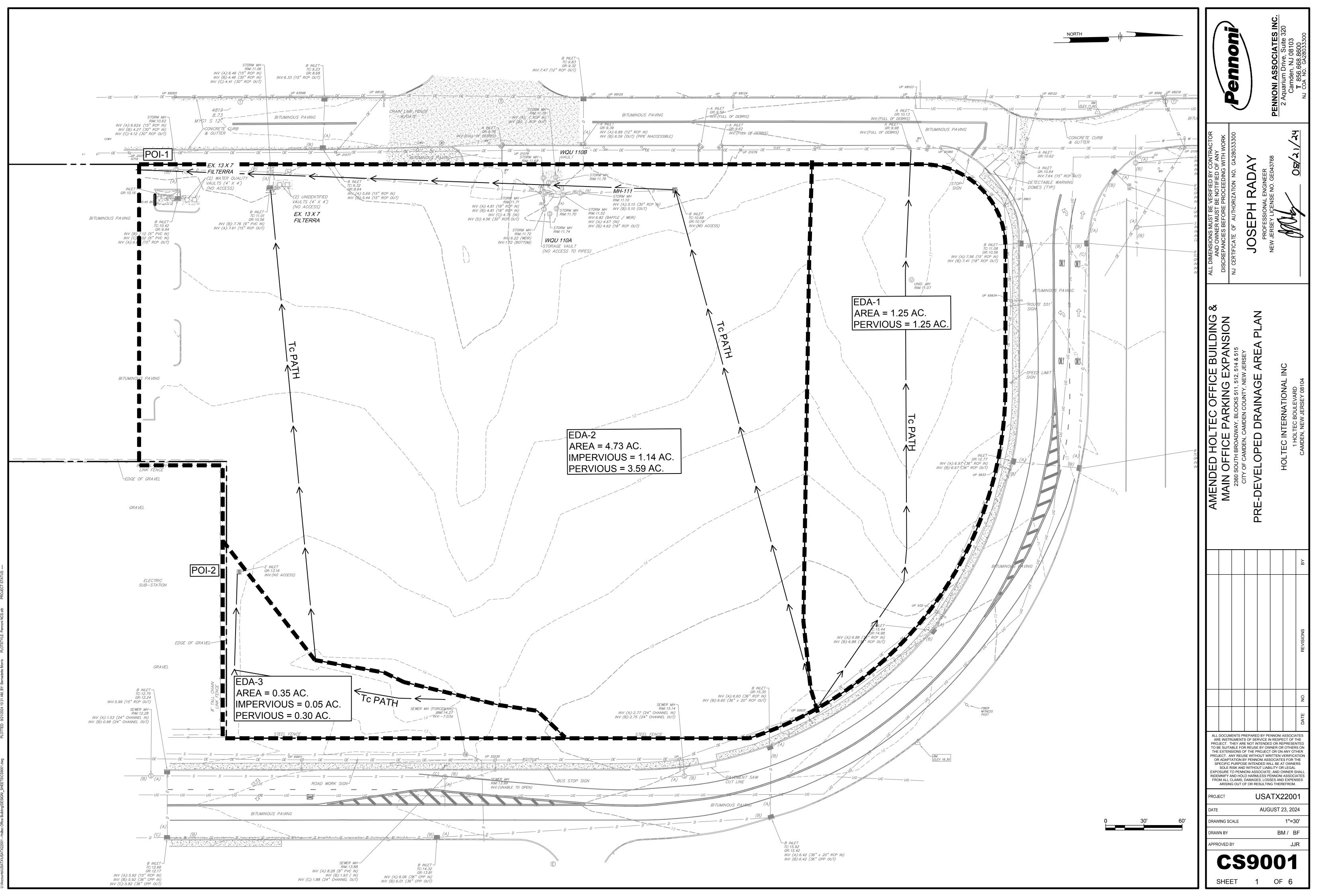
Duration								
5-min	2-day							
10-min	— 3-day							
15-min	— 4-day							
30-min	— 7-day							
	— 10-day							
2-hr	- 20-day							
— 3-hr	— 30-day							
— 6-hr	— 45-day							
- 12-hr	— 60-day							
— 24-hr								

NOAA Atlas 14, Volume 2, Version 3

Created (GMT): Thu Apr 20 19:16:39 2023

Back to Top

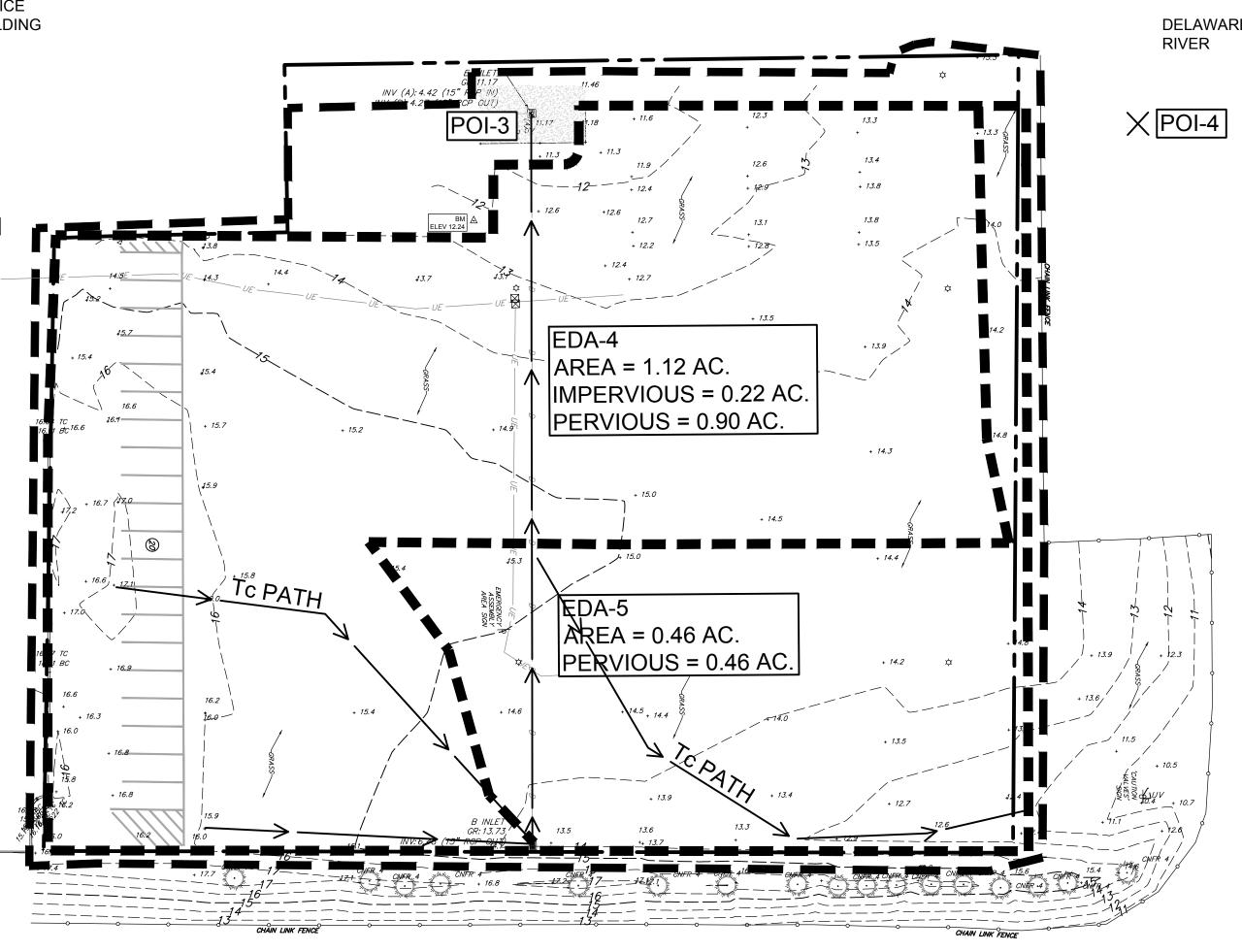
Maps & aerials


Small scale terrain

URBAN AREA

New Jersey Department of Environmental Protection NJDEP | NJ Department of Community Affairs. Local Planning Services

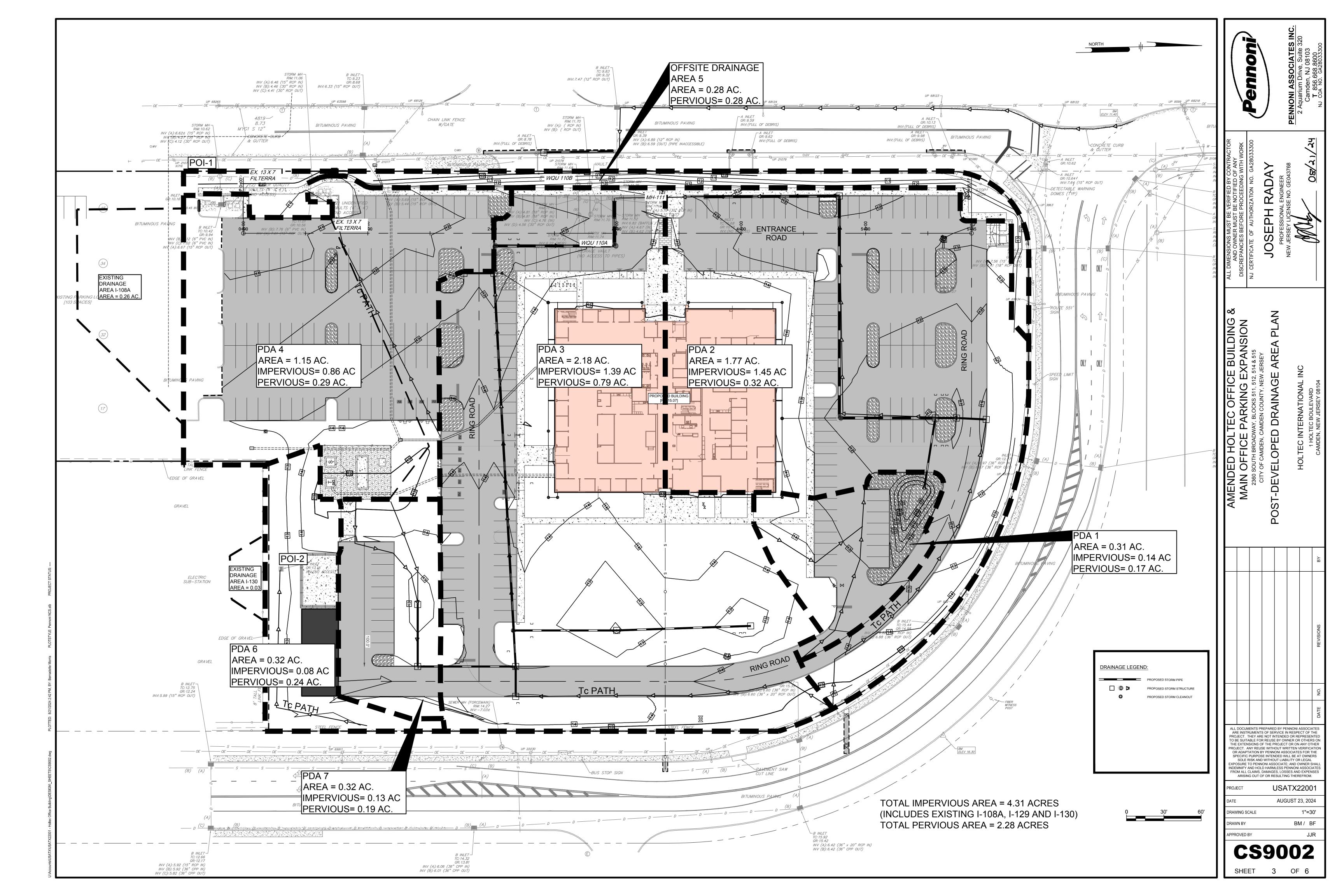
Appendix D

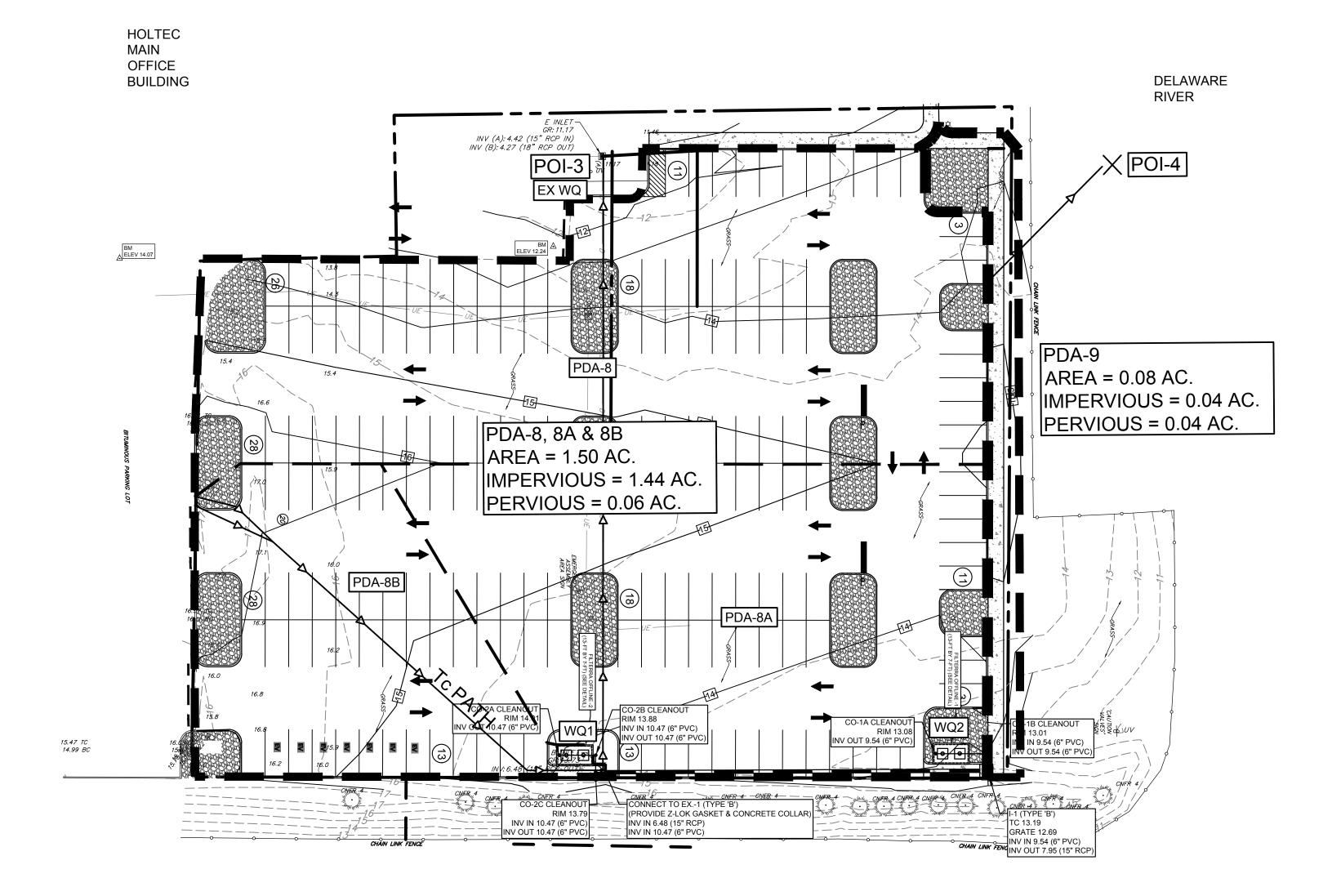


HOLTEC MAIN OFFICE BUILDING

BM ELEV 14.07

15.47 TC 14.99 BC


بر

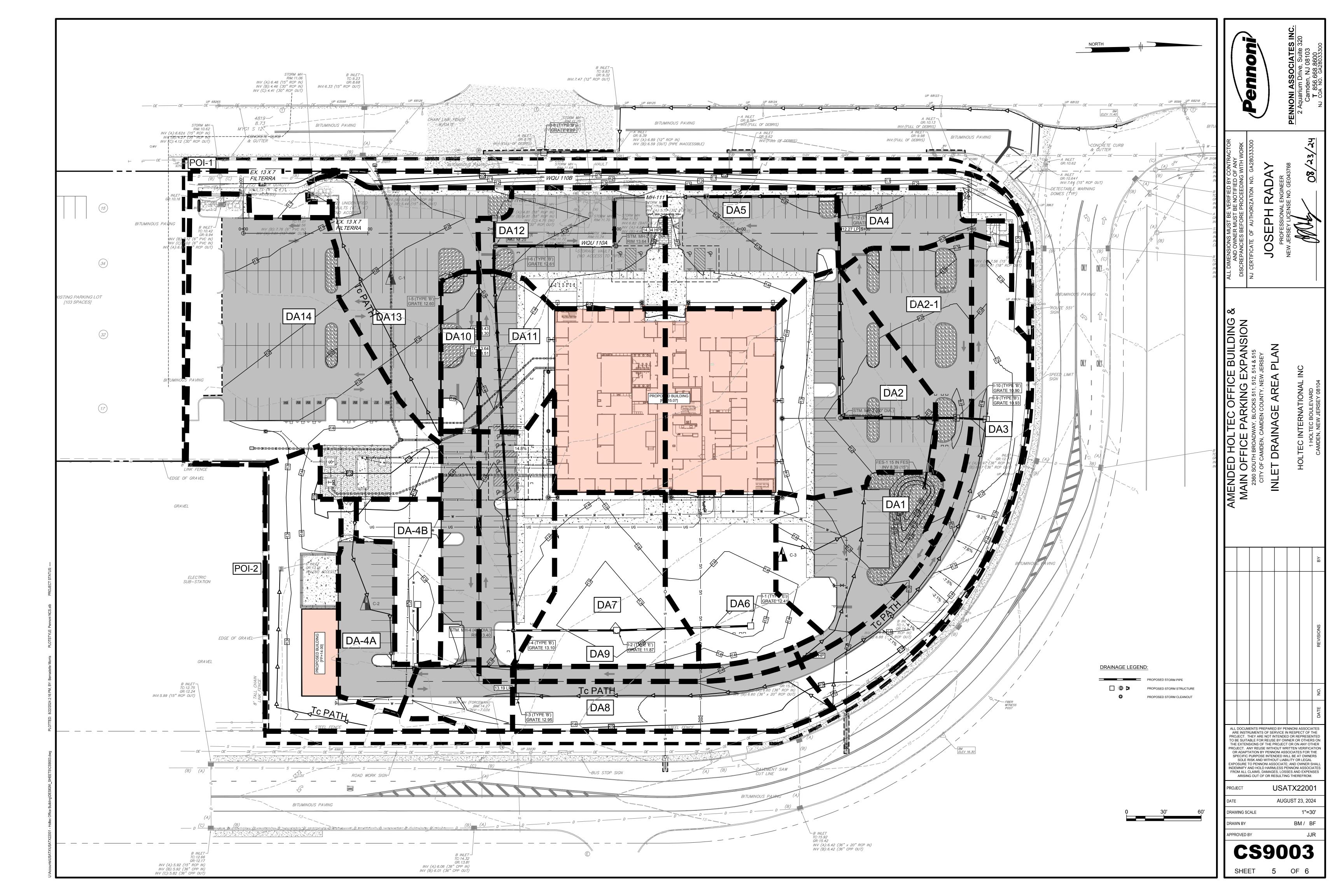

			PENNONI ASSOCIATES INC. 2 Aquarium Drive, Suite 320 Camden, NJ 08103	T 856.668.8600 NJ COA NO. GA28033300
	ALL DIMENSIONS MUST BE VERIFIED BY CONTRACTOR AND OWNER MUST BE NOTIFIED OF ANY DISCREPANCIES BEFORE PROCEEDING WITH WORK	JOSEPH RADAY PROFESSIONAL ENGINEER	NEW JERSEY LICENSE NO. GE043768	
	AMENDED HOLTEC OFFICE BUILDING & MAIN OFFICE PARKING EXPANSION	2360 SOUTH BROADWAY, BLOCKS 511, 512, 514 & 515 CITY OF CAMDEN, CAMDEN COUNTY, NEW JERSEY PRE-DEVELOPED DRAINAGE AREA PLAN	HOLTEC INTERNATIONAL INC	CAMDEN, NEW JERSEY 08104
				NO. REVISIONS BY
	ARE INSTRU PROJECT. TH TO BE SUITAB THE EXTENSI PROJECT. AN OR ADAPTA SPECIFIC PI SOLE RIS EXPOSURE TO INDEMNIFY AN FROM ALL CL	NTS PREPARED BY PI IMENTS OF SERVICE I EY ARE NOT INTENDE ILE FOR REUSE BY OV ONS OF THE PROJEC ONS OF THE PROJEC ONS OF THE PROJEC Y REUSE WITHOUT WA TION BY PENNONI AS URPOSE INTENDED W SK AND WITHOUT LIAB O PENNONI ASSOCIAT ID HOLD HARMLESS F AIMS, DAMAGES, LOS	IN RESPECT OF T ED OR REPRESEI WNER OR OTHER T OR ON ANY OT RITTEN VERIFIC/ SOCIATES FOR T JILL BE AT OWNE BILITY OR LEGAL E; AND OWNER S PENNONI ASSOCI SSES AND EXPEN	DATE DATE DATE DATE DATE DATE DATE
60'	PROJECT DATE DRAWING SCA DRAWN BY APPROVED BY	AUG	ATX2200 GUST 23, 202 1"=3 BM / B JJ	24 0' IF R
		т 2	OF 6	

NORTH

DELAWARE RIVER

		Lennon (PENNONI ASSOCIATES INC.	z Aquarium Drive, Suite 320 Camden, NJ 08103	T 856.668.8600 NJ COA NO. GA28033300
ALL DIMENSIONS MUST BE VERIFIED BY CONTRACTOR AND OWNER MUST BE NOTIFIED OF ANY	DISCREPANCIES BEFORE PROCEEDING WITH WORK	NJ CERTIFICATE OF AUTHORIZATION NO. GA28033300	JOSEPH RADAY	PROFESSIONAL ENGINEER	NEW JERSEY LICENSE NO. GE043768		
AMENDED HOLTEC OFFICE BUILDING &	MAIN OFFICE PARKING EXPANSION	2360 SOUTH BROADWAY, BLOCKS 511, 512, 514 & 515					CAMDEN, NEW JERSEY 08104
							ВΥ
							REVISIONS
							ON
							DATE
ARE PROJ TO BE THE PROJ OR SPI EXPO INDEM FROJ	E INSTR ECT. T E SUITA EXTEN ECT. A ADAPT ECIFIC SOLE F SURE T MNIFY A M ALL C ARISIN	RUMENT THEY AR BLE FO SIONS C NY REU ATION E PURPOS RISK ANI TO PENN ND HOL CLAIMS,	REPARE S OF SE E NOT IN R REUSS OF THE P SE WITHO SE INTEN O WITHO IONI ASS D HARM DAMAGE OF OR RE	RVICE IN ITENDE E BY OW ROJECT OUT WF ONI ASS IDED WI UT LIAB GOCIATE LESS PI LESS PI ES, LOSS ESULTIN	N RESPE D OR RE NER OF C OR ON RITTEN N OCIATE LL BE A LLITY OF C AND C ENNONI G THER TX2	ECT OF 1 EPRESEI ANY OTHER /ERIFIC/ ES FOR 1 T OWNE R LEGAL WNER S ASSOCI D EXPEN	THE NTED IS ON HER ATION THE RS SHALL ATES ISES
DRAW		ALE			BI	1"=3 M / E	•
		-			-		
			90			L L	R

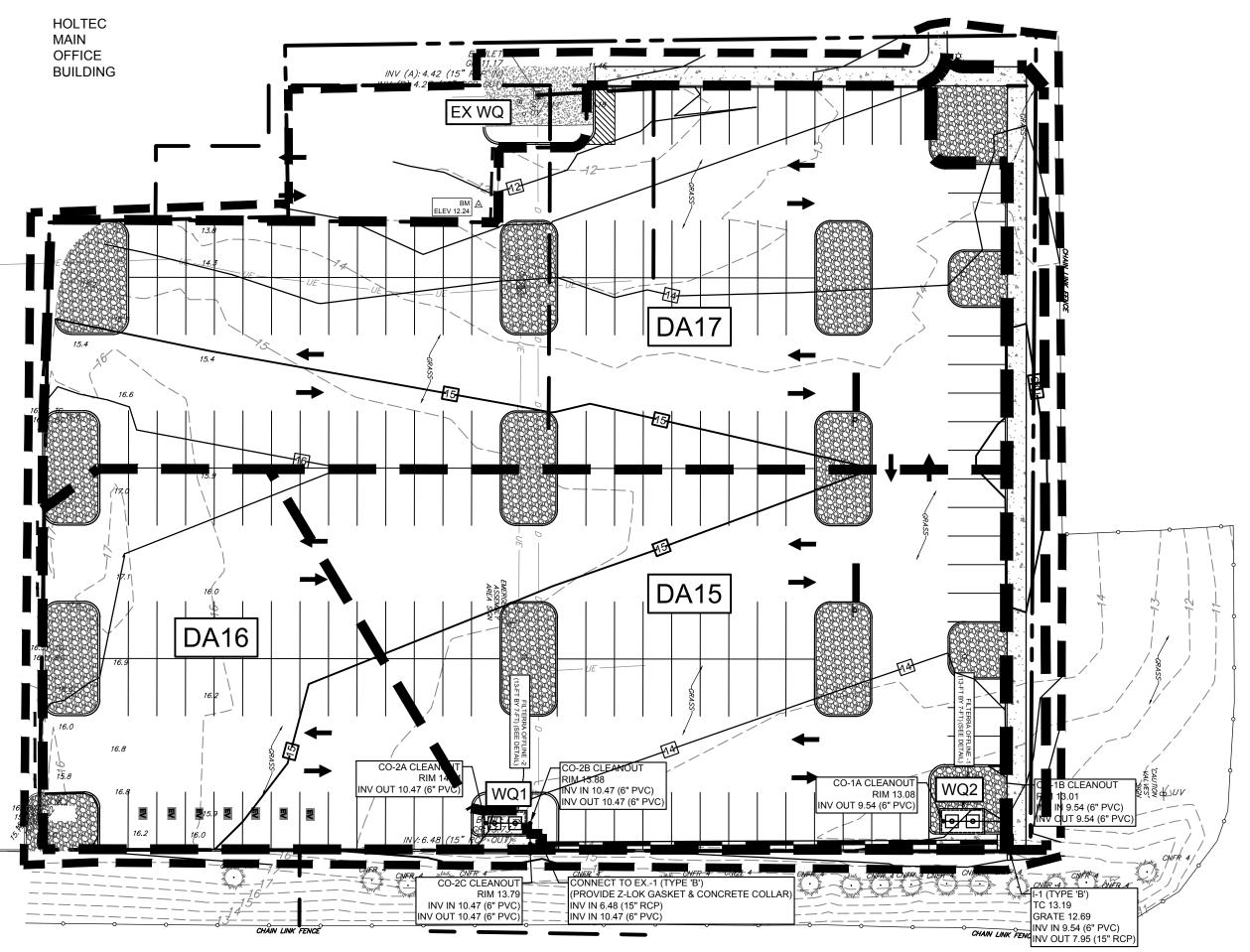
DRAINAGE LEGEND:


0

PROPOSED STORM PIPE

PROPOSED STORM STRUCTURE

PROPOSED STORM CLEANOUT


NORTH

HOLTEC MAIN OFFICE BUILDING

15.47 TC 14.99 BC

BM ELEV 14.07

Main of Figs Main of Figs <th< th=""><th></th><th>Pennoni</th><th></th><th></th><th>PENNONI ASSOCIATES INC.</th><th>z Aquarium Drive, Sulte 320 Camden, NJ 08103</th><th>T 856.668.8600 NJ COA NO. GA28033300</th></th<>		Pennoni			PENNONI ASSOCIATES INC.	z Aquarium Drive, Sulte 320 Camden, NJ 08103	T 856.668.8600 NJ COA NO. GA28033300
NUMBER Non- Non- Non- NUMBER Non- Non- Non- Non- Number Non- Non- Non- Non- Number Non- Non- Non- Non- Number Number Non- Non- Non- Non- Number Number Number Non- No	ALL DIMENSIONS MUST BE VERIFIED BY CONTRACTOR AND OWNER MUST BE NOTIFIED OF ANY DISCREPANCIES BEFORE PROCEEDING WITH WORK	NJ CERTIFICATE OF AUTHORIZATION NO. GA28033300	JOSEPH RADAY	PROFESSIONAL ENGINEER	NEW JERSEY LICENSE NO. GE043768	UC/EC/80	
Image: Section of the section of th	AMENDED HOLTEC OFFICE BUILDING & MAIN OFFICE PARKING EXPANSION	2360 SOUTH BROADWAY, BLOCKS 511, 512, 514 & 515	IN LET DDAINIACE ADEA DIAN			HOLIEC INTERNATIONAL INC 1 HOLTEC BOLIEVARD	CAMDEN, NEW JERSEY 08104
Image: Sector							ВΥ
ALL DOCUMENTS PREPARED BY PENNONI ASSOCIATES ARE INSTRUMENTS OF SERVICE IN RESPECT OF THE PROJECT. THEY ARE NOT INTENDED OR REPRESENTED TO BE SUITABLE FOR REUSE BY OWNER OR OTHERS ON THE EXTENSIONS OF THE PROJECT OR ON ANY OTHER PROJECT. ANY REUSE WITHOUT WRITTEN VERIFICATION OR ADAPTATION BY PENNONI ASSOCIATES FOR THE SPECIFIC PURPOSE INTENDED WILL BE AT OWNERS SOLE RISK AND WITHOUT LIABILITY OR LEGAL EXPOSURE TO PENNONI ASSOCIATE; AND OWNER SHALL INDEMNIFY AND HOLD HARMLESS PENNONI ASSOCIATES FROM ALL CLAIMS, DAMAGES, LOSSES AND EXPENSES ARISING OUT OF OR RESULTING THEREFROM. PROJECT USATTX22001 DATE AUGUST 23, 2024 DRAWING SCALE 1"=30' DRAWN BY BM / BF							
ARE INSTRUMENTS OF SERVICE IN RESPECT OF THE PROJECT. THEY ARE NOT INTENDED OR REPRESENTED TO BE SUITABLE FOR REUSE BY OWNER OR OTHERS ON THE EXTENSIONS OF THE PROJECT OR ON ANY OTHER PROJECT. ANY REUSE WITHOUT WRITTEN VERIFICATION OR ADAPTATION BY PENNONI ASSOCIATES FOR THE SPECIFIC PURPOSE INTENDED WILL BE AT OWNERS SOLE RISK AND WITHOUT LIABILITY OR LEGAL EXPOSURE TO PENNONI ASSOCIATE; AND OWNER SHALL INDEMNIFY AND HOLD HARMLESS PENNONI ASSOCIATES FROM ALL CLAIMS, DAMAGES, LOSSES AND EXPENSES ARISING OUT OF OR RESULTING THEREFROM. PROJECT USATTX22001 DATE AUGUST 23, 2024 DRAWING SCALE 1"=30' DRAWN BY BM / BF							TE
	ARE INS PROJECT. TO BE SUI THE EXTE PROJECT. OR ADA [†] SPECIFI SOLE EXPOSURE INDEMNIFY FROM ALL ARISI PROJECT DATE	IRUMENT THEY AR TABLE FO NSIONS C ANY REU TATION E C PURPOC RISK ANI TO PENN AND HOI CLAIMS, NG OUT C	IS OF SEI IE NOT IN R REUSE OF THE P SE WITH 3Y PENNA SE INTEN O WITHO NONI ASS D HARM DAMAGE OF OR RE	RVICE IN ITENDE BY OW ROJECT OUT WF ONI ASS IDED WI UT LIAB GOCIATE LESS PI ES, LOSS SULTIN	N RESPE D OR RE NER OF C OR ON RITTEN N OCIATE LL BE A LL BE A LL BE A NOONI SES AND G THER	ECT OF 1 EPRESEN COTHER ANY OT /ERIFIC/ SFOR T TOWNER LEGAL WNER S ASSOCI D EXPEN EFROM. 22000 23, 202	HE NTED S ON HER HTION HE RS HALL ATES SES 11
APPROVED BY JJR CS9003A	APPROVED		90)(JJ	R

NORTH	1	
		I

DRAINAGE LEGEND:

PROPOSED STORM PIPE

PROPOSED STORM STRUCTURE PROPOSED STORM CLEANOUT